

Arbeitsbereich für Energieeffizientes Bauen

Technical and economical analysis of solar cooling systems

Results of Task 53 (New Generation Solar Cooling)

Rebekka Köll¹, Daniel Neyer^{2,3}

¹AEE - Institute for Sustainable Technologies (AEE INTEC) ²Daniel Neyer Brainworks ³University of Innsburck

03.10.2018

Motivation

Task 53 👯

- Aim:
 - comparison of performance of PV and solar-thermal driven SHC systems
- Challenge:
 - High complexity (different technologies, configurations, control, storages)
 - Demand (space heating, domestic hot water, cooling)
 - Different capacities
 - Location
 - Boundaries (data available, which quality)
- T53E4-Tool developed to make comparison of systems
- 28 different cases of measured and simulated examples were analyzed

Primary energy savings vs. Cost ratio

Primary energy savings vs. Cost ratio

Analyzed systems T 53 - Overview

Task 53 👯

AEE INTEC

Results shown in

Trends (Costs vs. Efficiency)

- Categorized by boundary conditions
 - Location
 - Technology
 - Capacity
 - Demand

Sensitivity Analysis (Costs vs. Efficiency)

- Variation of
 - Investment costs
 - electricity price and gas price
 - auxiliary demand
 - energy output
 - PE conversion factor

AEE INTEC

Trend: Capacity

Task 53 👯

- Small scale highest costs → designed to achieve high energy savings
- Intermediate scale are cost competitive at energy savings < 50 %</p>
- Large scale cost competitve at higher energy savings

Trend: Technology

Task 53 🎇

- ST + boiler lower increase than ST + HP
- ST + boiler = efficient use of both technologies
- PV systems perform better, because examples are in southern areas

Trend: Location and technology

Task 53 👯

- Southern SHC systems more cost competitive than northern locations → higher/more constant loads
- PV and ST nearly same performance when considering location

Sensitivity Analysis

- Influence of boundaries
 - Investment costs
 - Electricity price
 - Natural gas price
 - Auxiliary demand/energy input
 - Non renewable primary energy factor

Sensitivity Analysis – Investment costs

Task 53 👯

AEE INTEC

- Only effects CR
- 100 % indicates standardized investment costs at the moment
- Plants with higher f_{sav} are more sensitive
- PV systems are more sensitive

www.aee-intec.at

Sensitivity Analysis – Natural Gas Price

- Only effect CR
- Standard 5 €ct/kWh

Effects reference system and ST + natural gas boiler

Sensitivity Analysis – Primary Energy Factor

- Only effects f_{sav}
- Electricity based systems more effected
- No significant influence

Summery

AEE INTEC

Task 53 👯

Trends

- Simplified comparison
- Indication for Optimization
- Higher savings result in higher costs
- Location main influence on efficiency
- Sensitivity
 - Effect of changes in boundaries
 - Main influence: Investment costs & natural gas price (changes when reference system is different)

Limitations of analysis

- Analysis only showing trends no absolute numbers (too little amount of systems for analysis)
- Mainly demo systems not commercial systems
- Costs standardized vary on location, planning experience

Detailled analysis in Deliverable C3 of IEA SHC Task 53 "New Generation Solar Cooling" (including trend, sensitivity and individual system analysis)

Conclusion

Task 53 👯

- Both solar thermal and PV –driven systems can be cost competitive when well designed
- No significant difference btw PV and ST depends on level of optimization / proper design
- Focus for small system on easy to install and maintain systems
- PV preferred for small systems since easy to connect to HP
- ST systems need high investment costs (cooling tower) – only cost effective for large systems
- Cost competitiveness reached: fsave up to ~ 30 %

Conclusion

Task 53 👯

- Highest influence factor on CR: Investment costs further research should focus on reduction
- Decrease of investment costs
 - By 15 % → fsave up to ~ 65 % at CR 1
 - − By 30 % \rightarrow considerably below CR 1
- Gas price also significant influence (mainly influence reference system)
 - Difficult to predict
 - Depend on political, economic and exploration boundary conditions
 - Increase of 50 % gas price → CR 1 can be achieved for fsave ~ 60 % (instead of 30 %)
- Other boundary conditions e.g. auxiliary demand, primery energy factor, ... no significant influence

Thank you for your Attention