

Technical and Economic Assessment

of solar heating and cooling systems T53E4 evaluation tool

Daniel NEYER^{1,2}, Alexander THÜR², Rebekka Köll³

$$SPF_{th} = \frac{\sum Q_{out}}{\sum Q_{in}}$$

$$SPF_{el} = \frac{\sum Q_{out}}{\sum Q_{el,in}}$$

$$PER = \frac{\sum Q_{out}}{\sum \left(\frac{Q_{el,in}}{\varepsilon_{el}} + \frac{Q_{in}}{\varepsilon_{in}}\right)}$$

$$f_{sav.PER} = 1 - \frac{PER_{ref}}{PER_i}$$

$$\Delta SPF_{SHC} = \frac{Q_{WD.system} + Q_{HD.system} + Q_{hloss} - Q_{HB.system} * (1 - \%_{HB.C}) + Q_{HP.system}}{\frac{Q_{HB.system} * \%_{HB.C} * \varepsilon_{el}}{\varepsilon_{EC}} + E_{aux.SHC}}$$

Introduction

$$SPF_{equ} = \frac{PER_{NRE}}{\varepsilon_{el}}$$

$$PER_{NRE.ref} = \frac{\sum Q_{out}}{\sum \left(\frac{Q_{out.heat} + Q_{loss.ref}}{\epsilon_{in} * \eta_{HB.ref}} + \frac{Q_{out.cold}}{SPF_{C.ref} * \epsilon_{el}} + \frac{Q_{el,ref}}{\epsilon_{el}}\right)}$$

$$CAP_{solar} = \frac{\left(\frac{Q_{\text{CD.system}} + Q_{closs} - Q_{\text{CB.system}}}{EER_{ref}(f(kW))} - \frac{Q_{\text{HB.system}} * \%_{HB.C} * \epsilon_{el}}{\epsilon_{EC} \eta_b} - \Delta E_{aux.C}\right)}{t}$$

Introduction

- Solar cooling and heating can be complex
 - Solar Thermal or Photovoltaic driven
 - System design & configurations (backups, storages,...)
 - Demands (domestic hot water, space cooling, ...)
 - **...**

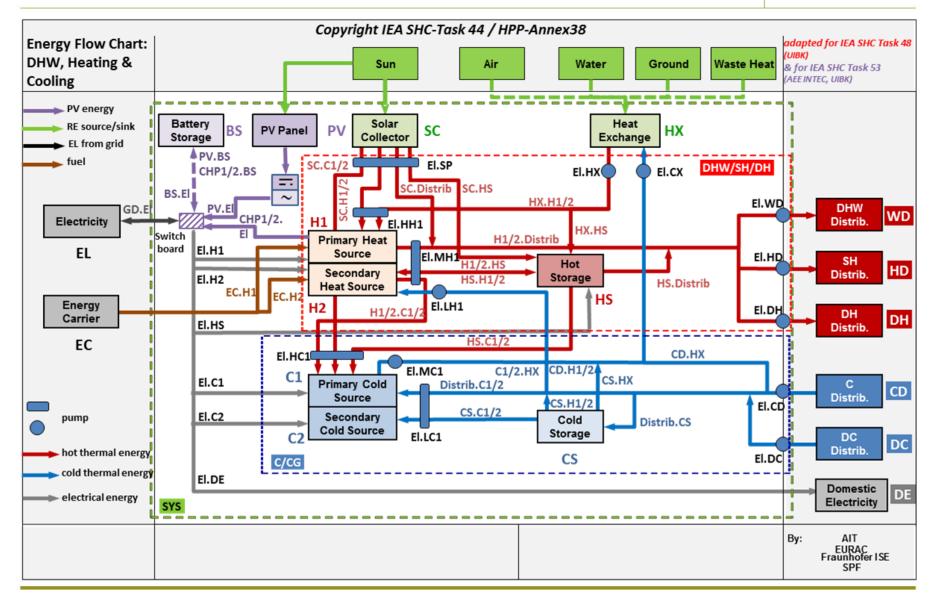
Component ↔ **System** ↔ **Building**

Conventional chiller and gas heating system

Solar heating and cooling component

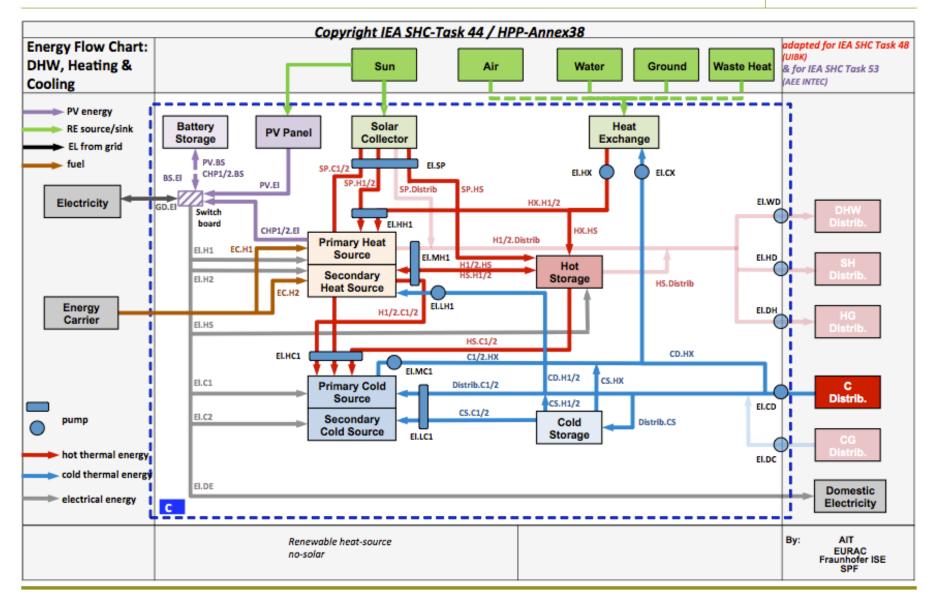
Building Heating, Cooling & Hot Water System

Introduction

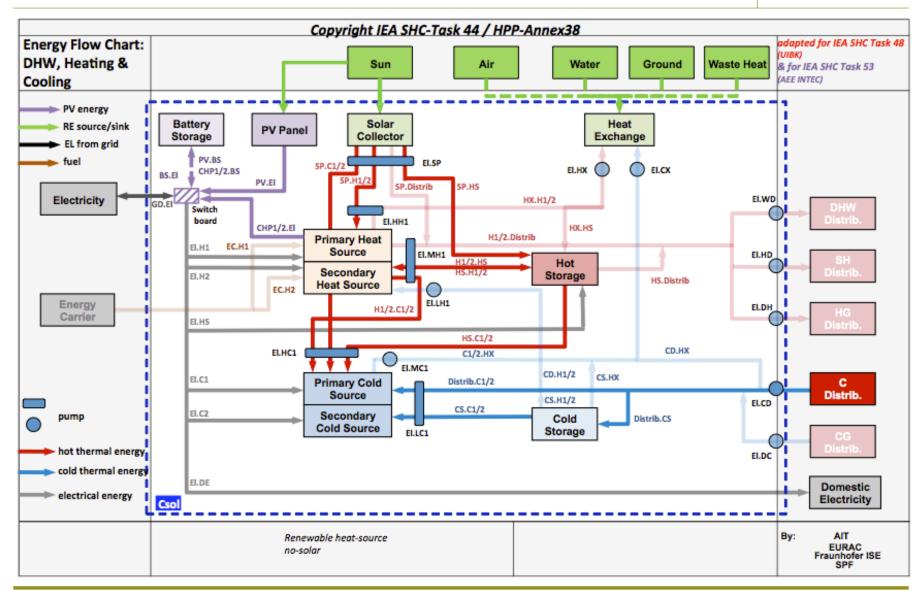


- ? Which **key performance indicators** to use ?
- ? Benchmarks for and against SHC systems ?
- ? Combine gas and electricity in one key figure ?? Steady state vs. dynamic behavior ?
- → Assessment in a **common comparable format**
 - energetic, ecological, economic, evaluation
 - → T53E4 Assessment Tool
 - Assessment based on (monthly) energy balances
 - Measured or simulated (sub) system
 - Data base for technical and economic assessment
 - T53 standard & specific results

System & Components



Boundary - Cooling



Boundary - Solar Cooling

Systems & Components

Technical and economic data available for

	components			
Solar Thermal	Flat Plate Collector			
Collectors (SC)	Evacuated Tube Collector			
Photovoltaic (PV)	Photovoltaic Panels			
	BOS (balance of system)-components			
Heating (H1, H2)	Natural Gas Boiler			
	• Pellets Boiler			
	Heat Pump (not reversible/reversible)			
	Absorption Heat Pump (not reversible/reversible)			
	Combined Heat&Power Plant			
	District Heating (as heat source)			
Cooling (C1, C2)	Air-Cooled Vapour Compression Chiller			
	Water-Cooled Vapour Compression Chiller			
	Absorption Chiller (Single Effect & Double Effect)			
	Adsorption Chiller			
	District Cooling (as cold source)			
Storage	Hot Storage			
(HS, CS, BS)	Cold Storage			

Technical Key Figures

Non-renewable primary energy ratio (PER_{NRE})

Energy input (Q_{in}) converted in primary energy

electricity: $\mathbf{\epsilon}_{el} = 0.4 \text{ kWh}_{Use}/\text{kWh}_{PE.NRE}$ natural gas: $\mathbf{\epsilon}_{in} = 0.9 \text{ kWh}_{Use}/\text{kWh}_{PE.NRE}$

$$PER_{NRE} = \frac{\sum Q_{out}}{\sum \left(\frac{Q_{el,in}}{\varepsilon_{el}} + \frac{Q_{in}}{\varepsilon_{in}}\right)}$$

Standardized Task 53 reference system
 Natural gas boiler, air-cooled vapor compression chiller

$$\label{eq:per_nref} \begin{aligned} \text{PER}_{NRE.ref} &= \frac{\sum Q_{out}}{\sum \left(\frac{Q_{out.heat} + Q_{loss.ref}}{\epsilon_{in} * \eta_{HB.ref}} + \frac{Q_{out.cold}}{SPF_{C.ref} * \epsilon_{el}} + \frac{Q_{el,ref}}{\epsilon_{el}}\right)} \end{aligned}$$

Non-renewable primary energy savings (f_{sav.PER-NRE})

$$f_{sav.PER-NRE} = 1 - \frac{PER_{NRE.ref}}{PER_{NRE.SHC}}$$

Technical Key Figures

SPFequ = SPF in electrical equivalent units,

PER converted into a comparable magnitude for vapour compression chiller / heat pump

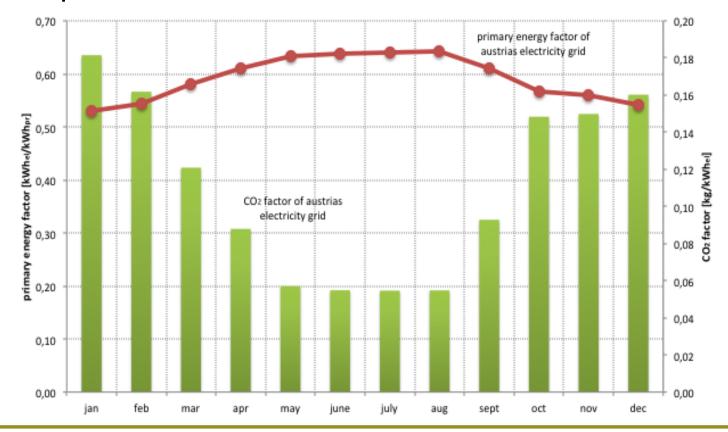
$$SPF_{equ} = \frac{PER_{NRE}}{\varepsilon_{el}} = \frac{\sum Q_{out}}{\sum \left(Q_{el,in} + \frac{Q_{in}}{\varepsilon_{in}} * \varepsilon_{el}\right)}$$

to compare the overall heating / cooling system with a vapour compression chiller / heat pump

Primary Energy

Annual non-renewable primary energy conversion factors

	T53 Standard	Unit
Primary energy factor for electricity $\boldsymbol{\epsilon}_{\text{el}}$	0.40	kWh _{el} /kWh _{pr}
CO ₂ factor for electricity	0.55	kg/kWh _{el}
Efficiency of the natural gas boiler η_{HB}	0.9	-
Primary energy factor for natural gas ϵ_{EC}	0.9	kWh _{el} /kWh _{pr}
CO ₂ factor for natural gas	0.26	kg/kWh _{el}
Efficiency of the pellets boiler η_{HB}	0.86	-
Primary energy factor for pellets ϵ_{EC}	10	kWh _{el} /kWh _{pr}
CO ₂ factor for pellets	0.05	kg/kWh _{el}


→ Specific values country wise

Electricity

- Monthly T53 standard values for non-renewable primary energy and CO2 emissions
- Example for Austria, based 2015

Economic Key figures

- Different views / interests
 - Customer, Investor, Facility management...
- Different methods & key figures (dynamic calculation):
 - Amortization method
 - Discounted cash flow method
 - Present value method
 - Annuity method

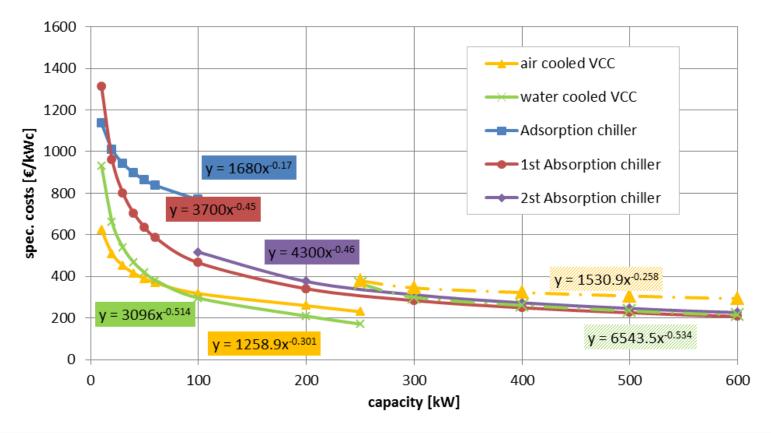
- → pay back time
- → internal rate of return (IRR),
- → net present value (NPV),
- → annualized costs
- → Levelized cost of energy

- → Comparing systems with economic life time of components
- → Many misleading KPIs...
- → Many decisions in early stage...

Economic Key figures

- Annuity method & input values based on EN-standards
- Standardized (data base) to calculate annualized costs
 - Investment, replacement & residual value
 - Maintenance & service,
 - Operational costs (energy, water)
 - Solar Heating and Cooling and Reference
 - → Levelized cost of energy

→CostRatio (CR)


$$CostRatio(CR) = \frac{annualized\ costs\ SHC}{annualized\ cost\ REF}$$

Investment Costs

- For all main components,
 - size dependent incl. economy of scale
 - e.g. vapour compression / absorption chiller

Economic Base

Economics	
Period under consideration	25 a
Credit period	10 a
Inflation rate	3 %

Energy costs	
Electricity (energy)	10 ct/kWh
Electricity (power)	80 €/kW.a
Feed-in tariff without subsidies	3 ct/kWh
Natural gas	5 ct/kWh
Water	2.5 €/m³

Reference System - VCC

- Water cooled VCC
- Air cooled VCC

- Depending on capacity
 - Configuration (1/2 hydraulic circuits)
 - Technologies (comp.: scroll, screw, turbo; heat exchanger;...)

Capacity [kW]	Circuit	Water cooled	Air cooled
20	1	Scroll	Scroll
50	1	Scroll	Scroll
100	1	Scroll	Scroll
250	2	Scroll/Turbo	Scroll
500	2	Turbo	Screw
1000	2	Turbo	Screw

Reference - VCC

 European Seasonal Energy Efficiency Ratio (ESEER) of standard vapor compression chiller according to

Summary

- T53E4 Assessment Tool
 - Simplified analysis of system / subsystem
 - T53 Standard & specific calculation
 - Useful for benchmarking against reference and other RE
 - Focus on
 - non-renewable primary energy (fsav.NRE)
 - Cost Ratio
- → need of working group for harmonizing of calculation methods and technical and economic key performance indicators

Final reports of IEA SHC Task 53

to be expected soon

http://task53.iea-shc.org/
Tool download

Tool download

Tool download

Tool download

Tool download

Tool download

Autumn 2018

Final Version to be expected in

Autumn 2018

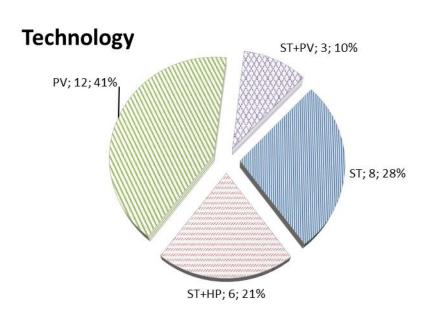
CORE

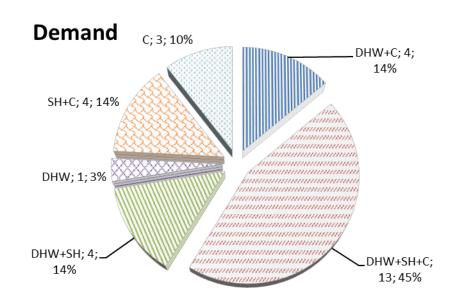
THE CYBERNETICS
OF RENEWABLE ENERGY
AND EFFICIENCY.

oberradin 50 6700 bludenz austria +43 664 28 26 529 daniel@neyer-brainworks.at www.neyer-brainworks.at

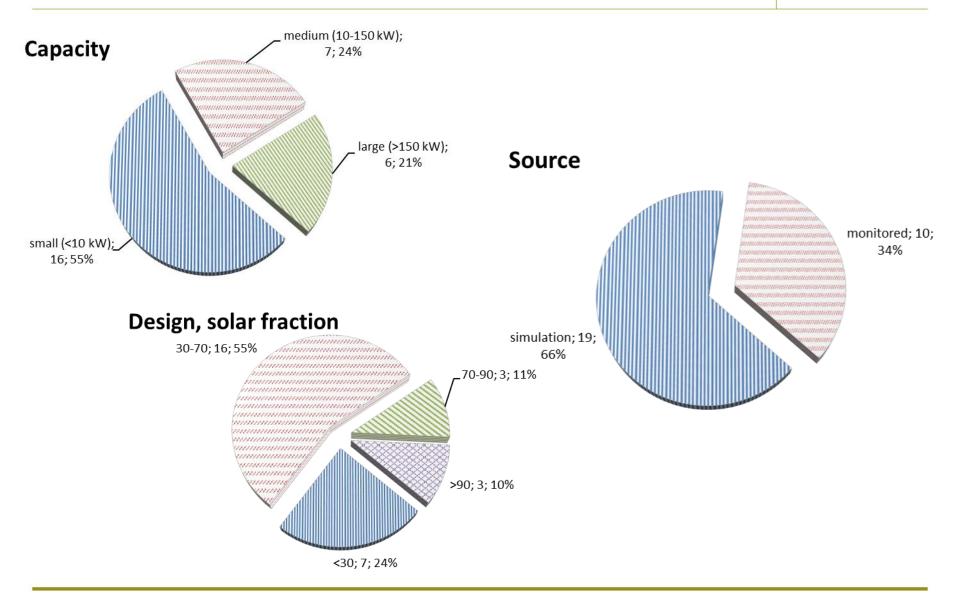
Thank you for your attention!

T53 Best practice examples


Introduction


Overview Examples

- Assessment of 28 SHC plants with T53E4 Tool
 - 17 examples (28 configurations)
 - System & Subsystem Analysis
 - Trend analysis
 - Sensitivity analysis



Overview Examples

Results obtained

- Assessment of 28 SHC plants with T53E4 Tool
 - Technical analysis
 - Energy balance check
 - Comparison to T53 Standard
 - System & Subsystem Analysis
 - PER_{NRE}, PER_{NRE.ref}, f_{sav.NRE}, SPF_{equ}
 - Economic analysis
 - Investment, Replacement & Residual
 - Maintenance, Energy (electricity, natural gas,...)
 - Comparison to T53 Standard
 - Spec. Invest, LCOE_{SHC}, LCOE_{REF}, CR
- Trend analysis
- Sensitivity analysis