

Adapted Monitoring procedure for New Generation Solar Cooling & Heating Systems IEA SHC Task 53 – Subtask C1

Bettina Nocke,

AEE – Institut für Nachhaltige Technologien A-8200 Gleisdorf, Feldgasse 19

Daniel Neyer, Katharina Stadler, Alexander Thür

Universität Innsbruck, Institut für Konstruktion und Materialwissenschaften, A - Innsbruck

Karl A. Berger

Austrian Institute of Technology GmbH, A - Wien

0,85

0,85

Task 48 Subtask B7 EURAC, UIBK...... "Collection of criteria to quantify the quality and cost competitiveness for solar cooling systems"

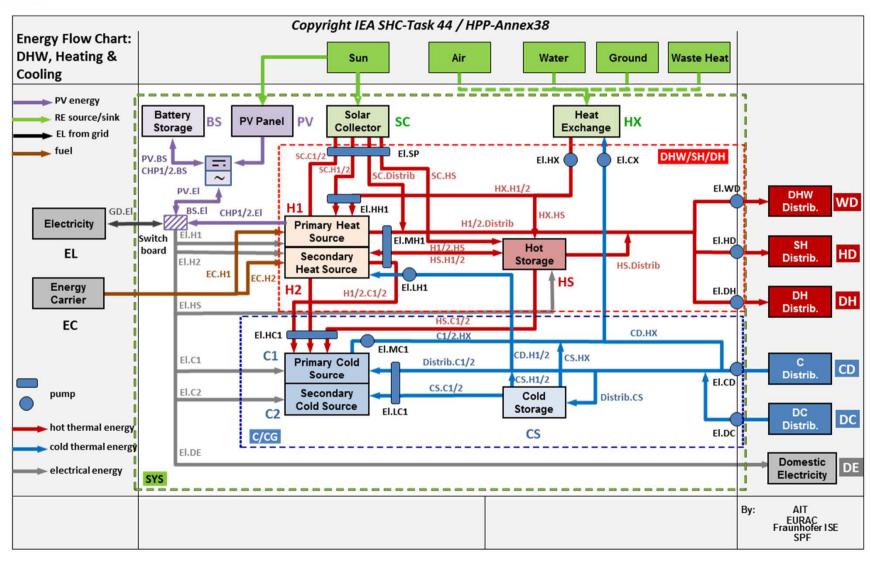
In T 48 B7, a proposal for an appropriate evaluation procedure for the technical and economic performance assessment of SHC systems is set up

					•			7-	-				- 0-		based (on the	
	Sink	ty	Carrier		Heat	Collectors	Probes	Storage	n Storage	Backups		Backups	ary Storage	Distribution	source-sink as in Ta		
		Electricity	Energy	Sun	Waste	Solar	Ground	Primary	Rejection	Cold	웃	호	Secondary	Heat	Detaile	ed con	version
Source	I =:	EI	EC	Su	He	SC	GP	PS	RS	CB	HP	HB	SS	HD	footore	for di	ifforont
Electricity	EC		1		+	1				Х	Х	X		-	factors	ior ar	nerent
Energy Carrier Sun	Su											Х			countrio	0 111050	dofina
Waste Heat	He					Х									countrie	S Were	e aemie
Solar Collectors	SC										effici	ency (of the	boile	r - η.HB		
Ground Probes	GP				untry			no	hot ba	ckup		natura			pellets		specific HB
Waste Heat Exchanger	HH			I -				110	iiot ba	скир		Hatura	i yas		•		·
Primary Storage	PS				ıstria						0,01				0,875	0,814	0,85
Rejection Storage	RS			Αι	ıstralia						0,01				0,66	0,85	0,85
Cold Backups	CB			LL Fra	ance						0,01				0,91	0,78	0,85
HP	HP			1 1 .	ermany						0,01				0,96	0,85	0,85
Hot Backups	HB				,										0,9	· ·	
Secondary Storage	SS			∐ lta	•						0,01					0,85	0,85
Heat Distribution	HD			Щ₽.	R.Chin	a					0,01	<u> </u>	<u> </u>	<u> </u>	0,95	0,9	0,85
				x1							0,01				0,95	0,9	0,85
				x2							0,01				0,9	0,85	0,85
								_									

0,01

0,9

T48 Standard


Task 48 Subtask B7 EURAC, UIBK "Collection of criteria to quantify the quality and cost competitiveness for solar cooling systems"

- To show the level of quality of the solar cooling and heating systems
- to extend the quality characteristics from a component level to a system level
- tested with real cases
- Key Performance Figurs
- Indicative Economic Analysis

Task 53 Subtask C1: Extended Monitoring procedure for NG SHC Systems

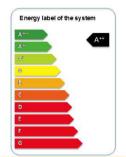
Task 53 Subtask C1: Adapted Monitoring procedure - Components available

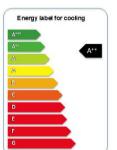
Solar Thermal	•	Flat Plate Collector						
Collectors (SC)	•	Evacuated Tube Collector	Evacuated Tube Collector					
Photovoltaic (PV)	•	Photovoltaic Panels	Photovoltaic Panels					
	•	BOS (balance of system)-components	S					
Heating (H1, H2)	•	Natural Gas Boiler						
	•	Pellets Boiler						
	•	Heat Pump (not reversible/reversible)						
	•	Absorption Heat Pump (not reversible/reversible)						
	•	Combined Heat&Power Plant						
	•	District Heating (as heat source)						
Cooling (C1, C2)	•	Air-Cooled Vapour Compression Chiller						
	•	Water-Cooled Vapour Compression Chiller						
	•	Absorption Chiller (Single Effect & Double Effect)						
	•	Adsorption Chiller						
	District Cooling (as cold source)							
Storage	•	Hot Storage	on oh					
(HS, CS, BS)	•	Cold Storage	each					
	•	Battery Storage	includes					
Heat Rejection	•	wet cooling tower	and					
(HX)	•	dry cooling tower	and					
	•	hybrid cooling tower						

each component includes a technical and economical assessment and evaluation base

Task 53 Subtask C1: Adapted Monitoring procedure – what else is new?

- PV systems and electricity produced by CHP
- Heating utilities heat distribution (HD), domestic hot water (WD) and district heating (DH)
- Cooling utilities cold distribution (CD), district cooling (DC)
- domestic electricity (DE)
- conversion factors for Primary Energy and CO₂equivalent for different countries (just in Task 48)
- updated efficiency factors for reference boilers and vapour compression chillers (in collaboration with related manufacturers).
- monthly variable factors are now available

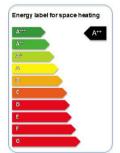

Task 53 Subtask C1: Calculation of Key Performance Indicators


$$\%_{SC} = \frac{Q_{SC,System}}{Q_{SC} + Q_{EC,H1} + Q_{EC,H2} + Q_{EC,C1} + Q_{EC,C2}}$$

$$\%_{DV} = \frac{PV.EL}{PV.EL + GD.EL}$$

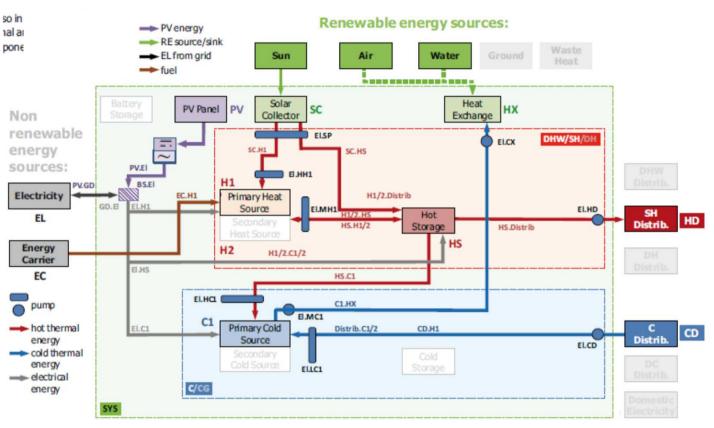
$$PER_{NRE,system} = \frac{Q_{final,system}}{Q_{PE_NRE}}$$

$$PER_{NRE,ref,sys} = \frac{Q_{final,system}}{Q_{final,system} + Q_{final,system}} + \frac{Q_{final,system}}{Q_{final,system}} + \frac{Q_{final,system}}{$$


$$f_{\textit{sav.NRE.PER.sys}} = 1 - \frac{\textit{PER}_{\textit{NRE.ref.sys}}}{\textit{PER}_{\textit{NRE.sys}}}$$

$$SPF_{equ.sys} = \frac{PER_{NRE,sys}}{\varepsilon_{el}}$$

Energy Labelling



Task 53 Subtask C1: Adapted Monitoring - First example

Office building in Austria (Gleisdorf)

Solar Thermal Collectors (SC)	65 m² Flat Plate Collector
Photovoltaic (PV)	35 m ²
Heating (H1)	Local heat (wood chip boiler)
Cooling (C1)	Absorption Chiller
Storage (HS)	: Hot Storage
Heat Rejection	wet cooling tower

	Calc Task 53
PER _{NRE}	9.66
PER _{NRE,ref}	0,82
fsav _{NRE,PER}	92%
SPF _{equ.}	: 16,35

Task 53 Subtask C1: Adapted Monitoring - currently status

- The presented work is still in ongoing process !!!! (V1.4)
- Cost Key Figurs (€/kWh) are going to be implemented in the tool and if required, other aspects emerging during the course of Task 53.
- Further PV-related issues will be included, such as
 - ❖ Yield (kWh_{el} / kW_D)
 - ❖ Performance Ratio (%)
 - benefits from self-consumption of solar produced electricity
- The interaction with the electricity grid, that means one of the advantages of "NG SHC", depends strongly on the boundary conditions in the energy policy environment which is in a transformation phase.
- The developed schematics can be used to evaluate the influence of different policy measures on the operation and performance of NG SHC systems.