

Final report

State of the art of new generation commercially available products

Date: 13.03.2017

By Daniel Mugnier ¹ & Alexandre Mopty									
By Marcus Rennhofer ² & Tim Selke ²									
¹ Institution	TECSOL SA								
Address	105 av. Alfred Kastler – BP90434 – 66004 PERPIGNAN - Cedex - FRANCE								
Phone	+33 4 68 68 16 40								
e-mail	daniel.mugnier@tecsol.fr								
² Institution	AIT Austrian Institute of Technology GmbH								
Address	ess Giefinggasse 2 1210 Vienna Austria								
Phone	ne +43 664 825 1008								
e-mail	marcus.rennhofer@ait.ac.at / tim.selke@ait.ac.at								

IEA Solar Heating and Cooling Programme (IEA SHC)

The Solar Heating and Cooling Technology Collaboration Programme was founded in 1977 as one of the first multilateral technology initiatives ("Implementing Agreements") of the International Energy Agency. Its mission is *"to enhance collective knowledge and application of solar heating and cooling through international collaboration to reach the goal set in the vision of solar thermal energy meeting 50% of low temperature heating and cooling demand by 2050.*

The members of the IEA SHC collaborate on projects (referred to as "Tasks") in the field of research, development, demonstration (RD&D), and test methods for solar thermal energy and solar buildings.

A total of 58 projects have been initiated, 50 of which have been completed. Research topics include:

- Solar Space Heating and Water Heating (Tasks 14, 19, 26, 44, 54)
- Solar Cooling (Tasks 25, 38, 48, 53)
- Solar Heat or Industrial or Agricultural Processes (Tasks 29, 33, 49)
- Solar District Heating (Tasks 7, 45, 55)
- Solar Buildings/Architecture/Urban Planning (Tasks 8, 11, 12, 13, 20, 22, 23, 28, 37, 40, 41, 47, 51, 52, 56)
- Solar Thermal & PV (Tasks 16, 35)
- Daylighting/Lighting (Tasks 21, 31, 50)
- Materials/Components for Solar Heating and Cooling (Tasks 2, 3, 6, 10, 18, 27, 39)
- Standards, Certification, and Test Methods (Tasks 14, 24, 34, 43, 57)
- Resource Assessment (Tasks 1, 4, 5, 9, 17, 36, 46)
- Storage of Solar Heat (Tasks 7, 32, 42, 58)

In addition to the project work, there are special activities:

- > SHC International Conference on Solar Heating and Cooling for Buildings and Industry
- > Solar Heat Worldwide annual statistics publication
- > Memorandum of Understanding working agreement with solar thermal trade organizations
- Workshops and seminars

Country Members

Australia	
Austria	
Belgium	
Canada	
China	
Denmark	
European Commission	

France Germany Italy Mexico Netherlands Norway Slovakia Spain Sweden Switzerland Turkey Portugal United Kingdom

Sponsor Members

European Copper Institute ECREEE Gulf Organization for Research and Development International Solar Energy Society RCREEE

For more information on the IEA SHC work, including many free publications, please visit www.iea-shc.org

Current Tasks

- Task 51 Solar Energy in Urban Planning
- Task 52 Solar Energy and Energy Economics in Urban Environments
- Task 53 New Generation Solar Cooling and Heating Systems (PV or solar thermally driven systems)
- Task 54 Price Reduction of Solar Thermal Systems
- Task 55 Towards the Integration of Large SHC Systems into DHC Networks
- Task 56 Building Integrated Solar Envelope Systems for HVAC and Lighting
- Task 57 Solar Standards & Certification
- Task 58 Material and Component Development for Thermal Energy Storage

Completed Tasks

- Task 1 Investigation of the Performance of Solar Heating and Cooling Systems
- Task 2 Coordination of Solar Heating and Cooling R&D
- Task 3Performance Testing of Solar Collectors
- Task 4Development of an Insolation Handbook and Instrument Package
- Task 5Use of Existing Meteorological Information for Solar Energy Application
- Task 6 Performance of Solar Systems Using Evacuated Collectors
- Task 7 Central Solar Heating Plants with Seasonal Storage
- Task 8Passive and Hybrid Solar Low Energy Buildings
- Task 9 Solar Radiation and Pyranometry Studies
- Task 10 Solar Materials R&D
- Task 11 Passive and Hybrid Solar Commercial Buildings
- Task 12 Building Energy Analysis and Design Tools for Solar Applications
- Task 13Advanced Solar Low Energy Buildings
- Task 14Advanced Active Solar Energy Systems
- Task 16 Photovoltaics in Buildings
- Task 17 Measuring and Modeling Spectral Radiation
- Task 18 Advanced Glazing and Associated Materials for Solar and Building Applications
- Task 19 Solar Air Systems
- Task 20 Solar Energy in Building Renovation
- Task 21 Daylight in Buildings
- Task 22 Building Energy Analysis Tools
- Task 23 Optimization of Solar Energy Use in Large Buildings

- Task 24 Solar Procurement
- Task 25 Solar Assisted Air Conditioning of Buildings
- Task 26 Solar Combisystems
- Task 27Performance of Solar Facade Components
- Task 28 Solar Sustainable Housing
- Task 29 Solar Crop Drying
- Task 31 Daylighting Buildings in the 21st Century
- Task 32 Advanced Storage Concepts for Solar and Low Energy Buildings
- Task 33Solar Heat for Industrial Processes
- Task 34Testing and Validation of Building Energy Simulation Tools
- Task 35 PV/Thermal Solar Systems
- Task 36 Solar Resource Knowledge Management
- Task 37 Advanced Housing Renovation with Solar & Conservation
- Task 38Solar Thermal Cooling and Air Conditioning
- Task 39Polymeric Materials for Solar Thermal Applications
- Task 40 Towards Net Zero Energy Solar Buildings
- Task 41Solar Energy and Architecture
- Task 42 Compact Thermal Energy Storage
- Task 43Solar Rating and Certification Procedures
- Task 44Solar and Heat Pump Systems
- Task 45 Large Systems: Solar Heating/Cooling Systems, Seasonal Storages, Heat Pumps
- Task 46Solar Resource Assessment and Forecasting
- Task 47 Renovation of Non-Residential Buildings Towards Sustainable Standards
- Task 48 Quality Assurance and Support Measures for Solar Cooling
- Task 49 Solar Process Heat for Production and Advanced Applications
- Task 50 Advanced Lighting Solutions for Retrofitting Buildings

Completed Working Groups

CSHPSS; ISOLDE; Materials in Solar Thermal Collectors; Evaluation of Task 13 Houses; Daylight Research

Contents

1.	Exe	ecutive Summary	6
2.	Wo	rk performed in Activity A2	6
	2.1	Methodology :	6
	2.2	General overview of the different systems collected in the Task 53 survey:	6
	2.3	Square view:	9
3.	Cor	nclusions	21

1. Executive Summary

The A2 activity is dedicated to building the state-of-the-art for new cooling and heating system configurations according to market available and close to market solutions (R&D level just before or during demo stage) at the start of SHC Task 53). This state-of-the-art is based on results from surveying SHC Task 53 participants, and no claim can be made for completeness. The survey results for both solar thermal and solar PV solutions are classified according different criteria: size, applications, etc.

The present report has been built so as to make a picture of the existing and future systems called "New Generation Solar Cooling and Heating Systems" and try to understand their main features. This picture cannot be completed but this can give an interesting fore view of this new generation. This survey is not including refrigeration systems.

The solutions are all pre-engineered systems with small to medium capacities for the following building types: single family houses, small multi-family buildings, offices, shops, commercial centres, factories, hotels. All of these buildings can be grid connected or off grid in case of PV cooling and heating. The cooling and heating power range will be from 1 kW_{cooling/heating} to several tens of kW_{cooling/heating}.

The majority of the presented solutions can be driven by solar thermal or/and solar photovoltaic energy, which means these are all solar cooling solutions. 10 solutions are described in a summary set of tables giving technical comparative details as well as some economic indications (overall average end user price for instance) and a comparative square view of the principle scheme is presented. Additional details and pictures can be found in the Annex.

2. Work performed in Activity A2

2.1 Methodology :

A questionnaire was distributed to SHC Task 53 participants in 2015 to collect information on current innovative solar cooling solutions both in the market and close to the market. The questionnaires have differentiated PV and solar thermal approach so as to permit a global understanding of each of them. For each system, a scientific contact member of Task 53 is identified and permits to deepen the technical analysis of the solutions and further exploitation of the data.

The process will continue for the duration of Task 53, until June 2018, to allow for the incorporation of new solutions.

2.2 General overview of the different systems collected in the Task 53 survey:

Ten systems are presented in the following Table 1 and Table 2, to show overall and technical information and to present economical data, respectively.

Task 53 🐇

Task 53 👯

Table 1 – Overall presentation of the data collection on innovative solar cooling and heating systems among IEA SHC Task 53

Logo	Manufacturer, country	Market status	Service	Solar input type	Nominal cooling capacity (kW or m ³ /h)	Nominal heating capacity (kW)	Nominal solar input (Wp for PV and m ² for ST	Cooling Storage	Target market area	Heat rejection	Back up	Other	Website
ATIS JS Concept	ATISYS, France	R&D	Cooling/ heating	PV	4 kW	5.1 kW	4.6 kW	Sensible tank	France, Northern Africa	Air	Grid	R290 chiller, short term elec. battery	www.atisys-concept.com
ClimateWell	CLIMATEWELL, Sweden	R&D	Cooling/ heating/DHW	ST	40 kW	108 kW	180 m ²	Sensible tank	Europe, sunny countries	Air	Electric chiller (390 kW)	Adsorption (LiCl/H20)	www.climatewell.com
* FREECOLD	FREECOLD, France	Commercial	Cooling	PV	2.5 kW	No heating	1.5 kW	-	Africa, developing countries	Air	Grid	solar input 24VDC, elec. battery possible	www.coldinnov.com/en
freesco	FREESCOO, Italy	R&D	Cooling/ heating	ST/PV	500 m ³ /h	1.44 kW	2.4 kW	-	Italy	Air		Desiccant technology	www.freescoo.com/solari nvent
GREE Kap	GREE. China	R&D	Cooling/ heating	PV	33.5 kW	37.5 kW	12.2 kW	None	China	Air	Grid	VRF	www.greeac.com
	KAYSUN, Spain	Commercial	Cooling/ heating	PV	3.5 kW	3.5 kW	0.7 kW	None	Spain, Europe	Air	Grid	Scroll, no battery	www.kaysun.es/es
PUCIX	PURIX, Denmark	Commercial	Cooling/ heating	ST	2.5 kW	3.6 kW	4.8 m ²	None	Europe, sunny countries	Air	Boiler	Absorption (LiBr/H20)	www.purix.com
solutions (nergies renouvelables DIFFUSION	SENR, France	Commercial	Cooling/ heating	PV	3.6 kW (split) 45 kW (VRF)	3.6 kW (split) 50 kW (VRF)	0.65 kW (split) 20 kW (VRF)	None	France, Europe, sunny countries	Air	Grid	Scroll, battery possible	www.senr.fr
SolabCool The best confort with pure energy	SOLABCOOL, Netherlands	R&D	Cooling/ heating	ST	4.5 kW	8 kW	13.3 m ²	None	Europe, sunny countries	Air	District heating	Silicagel- water adsorption cooling machine	www.solabcool.com
YAZAKI	YAZAKI, Japan	R&D	Cooling/ heating	ST	35 kW	60 kW	0.1 kW	Sensible tank	China	Air	Electric chiller (29.3 kW)	Absorption (LiBr/H20)	<u>www.yazaki-</u> group.com/global

Table 2 – Economical data on innovative solar cooling and heating systems among IEA SHC Task 53

Manufacturer	Market status	Service	Total Investment price (€*)	Solar production investment (€*)	Cold/heating production investment (€*)	Storage investment (€*)	Other (€*)	Specific invest. Cost (€*/kW _{cooling})	Annual maintenance cost (€*)	Contact
ATISYS	R&D	Cooling/heating	-	-	-	-	-	-	-	http://www.atisys-concept.com
CLIMATEWELL	R&D	Cooling/heating/DHW	-	-	-	-	-	-	-	http://www.climatewell.com
FREECOLD	Commercial	Cooling	3600	1500	2100	-	-	1 440	100	http://www.coldinnov.com/en/
FREESCOO	R&D	Cooling/heating	7500	1500	3500	-	2500	2 500	50	http://www.freescoo.com/solarinvent/
GREE	R&D	Cooling/heating	24600	12400	11800	-	400	734	300	http://www.greeac.com/
KAYSUN	Commercial	Cooling/heating	2500	700	1800	-		714	30	http://www.kaysun.es/es
PURIX	Commercial	Cooling/heating	4425	-	-	-	-	1 770	20	http://www.purix.com/
SENR - SRV	Commercial	Cooling/heating	97000	57000	25000	17000	3500	26944	1000	http://www.senr.fr
SENR - SPLIT	Commercial	Cooling/heating	2500	700	-	-	-	694	180	http://www.senr.fr
SOLABCOOL	R&D	Cooling/heating	-	-	-	-	-	-	-	http://www.solabcool.com
YAZAKI	R&D	Cooling/heating	-	_	-	-	_	_	_	https://www.yazaki- group.com/global/

* Note : end user price excluding VAT

Table 2 shows that mainly the commercially available solutions are able to deliver economical data on the systems (indicative investment end user price).

2.3 Square view:

The "square view" developed in Task 53 A4 activity provides a common approach to compare different systems. Based on the "square view" developed in SHC Task 44: Solar and Heat Pump Systems", this concept provides a means to compare different configurations for integrating solar cooling and heating systems in buildings, microgrids and the central grid.

It permits to present in a common and easy to understand manner all the different configurations of solar cooling and heating systems, either they are PV driven or solar thermally driven for example.

Heat Process Local Technical Cold El. Grid Ressource Grid Grid heat heat Installation Output Air type PV Heat pump handling unit Central Cooling Heat/cool driven El. Storage cooling coil Local in machine Heating building Solar Heating thermal XXXX Venti-Local in unit collector envelope lation Heat / Cold Compressio Storage Rooftop Domestic n chiller hot water. /balcony conversion supply production Elect. Energy System: **PVCOOLING** Hot water/air Company: ATISYS CONCEPT Cold water/air Refrigerant

Atisys (France) :

Task 53 🐇

Climatewell (Sweden):

Figure 2: SquareView ClimateWell - SunCool

ColdInnov (France) :

Figure 3: SquareView COLDINNOV - FREECOLD

Freescoo (Italy):

Figure 4: SquareView SolarInvent - Freescoo

Gree (China) :

Figure 5: Gree - Gree

Kaysun (Spain):

Figure 6: SquareView Frigicoll - Kaysun

Figure 7: SquareView PURIX - PURIX (district cooling)

Task 53 🎆

Purix (Danemark): Heat storage version

Figure 8: Square View PURIX - PURIX (heat storage)

Purix (Danemark): Back up version

Figure 9: SquareView PURIX - PURIX (backup)

Purix (Danemark): No Back up version

Figure 10: SquareView PURIX - PURIX (no backup)

Solabcool (The Netherlands):

Figure 11: SquareView SolabCool – SolabChiller

SENR (France) :

3. Conclusions

The present report is dedicated at presenting the state of the art of the new system configurations for cooling and heating. It is realised according to existing market available and close-to-market solutions (R&D level just before and during demo stage).

This state of the art shows a large diversity in term of configurations and different stage of developments from prototypes to fully commercially available products.

It can be seen as well that the majority of the products are coming from Europe where the major business of solar cooling is not really present due to mild climates. Some systems are offered by Asian companies however.

Other reports from Task 53 will answer further questions raised by this first survey: real systems feedbacks and measurements (Subtask C), comparison with reference systems and intercomparison (Subtask B), life cycle analysis (Subtask A).

Task 53 🐇

ANNEX

Activity A2

Company	ATISys
Address	ZI de TOULON EST
	901 Avenue Alphonse LAVALLEE
Country	83088 TOULON CEDEX 9, France
Contact	Philippe ESPARCIEUX
3 33	Tel. 04.94.48.25.63
	http://www.atisys-concept.com/
Brand name	PVCOOLING
Cooling power range	2 - 11 kW

<u>System</u>

P¥ COLLECTORS		
Total area	29.5	m ³ (aporture area)
Tilt ande :	23,0	: (0=boriz)
Orientation :	0	(0=nonz) * (0=south - 90 =west - 270=east)
Tupical peak power :	4590	Ve
. 34		
Туре:	Monocristal	ine
Model :	BLACK 230/	07
Manufacturer :	SOLON ENE	RGY
Country :	Germany	
SOLAN INTERTERS		
Brand :	Sunny Boy	
Model :	5000 TL - 21	
Typical nominal DC power :	5,25	k₩
Typical nominal AC power :	4,6	k₩
Number of phases :	1	
Inverter efficiency :	96,5	*
BATTERIES		
Canacitu range :	166	Ab (C120)
AUXILIARY POVER SOURCE	Grid 230 V	
HEAT PUMP		
Tupo	Diston	
Type :	Air to water	
Chilled fluid tupe :	B290	
Distributed chilled medium temperature :	4	°C
Model :	HG12P760-4	SHC
Manufacturer :	GEA	
Country :	Germany	
Cooling capacity:	3,98	KW
Electrical consumption in cooling mode :	1,11	KW Conditions: Toute 'C Tinte 'C
EEn : Heating canacitu :	51	- Conditions: Text= C Thit= C
Electrical consumption in heating mode -	111	κΨ
COP:	4,59	- Conditions: Text = 'C Tint = 'C
COLD STORAGE		
Tupe :	Sensible heat	

ClimateWell:

Activity A2

Company	ClimateWell AB
Address	Instrumentvägen 20
Country	Sweden
Contact	Corey Blackman
	corey.blackman@climatewell.com
	46704995355
Brand name	SunCool
Cooling power range	500 W to 150 kW

Heat sources

COLLECTORS	
Total area : Tilt angle : Orientation :	180 m ² (aperture area) 40 ° (0=horiz) 15 ° (0=south : 90 =west : 270=east)
Type :	Flat plate ; 2 glazing
Model : Manufacturer :	SunCool ClimateWell + Hewalex
Country :	Sweden + Poland
Type of installation :	Flat roof
Heat transfer medium :	Water + glycol
Flow control :	Variable
SOLAR HEAT STORAGE	
Total volume :	1 m3
Number of storage tanks : Storage medium :	1 - Water

AUXILIARY HEATING SYSTEM

Type : External direct

COMMENTS

District heating is used for both space heating and domestic hot water (DHW). The SunCool system is only connected to provide a portion of the DHW.

Cooling Equipment

CHILLER					
Type :	ClimateWe	II proprietar	y sorption modules		
Model :	SunCool Ge	n 1			
Manufacturer :	ClimateWell				
Country :	Sweden				
Nominal chilling capacity :	40	kW			
COP_thermal :	0,55	-			
stributed chilled medium temperature :	10	°C			
Nominal driving heat temperature :	NA	°C			

Driven by : solar thermal heat (solar autonomous operation)

HEAT REJECTION		
Thermal heat rejection capacity :	50	kW
Nominal electricity consumption (fan) :	0,45	kW

BACKUP CHILLER		
Type :	Screw	
Model : Manufacturer : Country :	30HXC Carrier France	
Chilling capacity :	390	kW
COP_eI:	3,3	-
Chilled medium temperature :	7	°C
Heat rejection :	Dry cooling	

COLD STORAGE		
Total volume :	12,6	m3
Number of storage tanks :	3	-
Storage medium :	Water	
Nominal exchange temprature :	7	°C

COMMENTS

Thermal coefficient of performance is an estimated value since it is difficult to determine since the cooling equipment is integrated directly into the collector. Dry cooler was a modified unit (new fans) already installed on site at the start of the project.

COMMENTS

The demonstration plant comprised 130 SunCool collectors with a total aperture area of 180 m2 connected in parallel in banks of 8 to 13 collectors. These 130 collectors were connected to the cold store and hot store as shown above.

Results from system operation

MONITORING PERIOD					
From :	11th July 20:	14			
Until :	31st August (2015			
Periods of sytem/monitoring interruption :	August 2014				
COLLECTORS					
Radiation gain, collector surface :	454	kWh/m²			
AUXILIARY HEATING					
Auxiliary heat for space heating/DHW :	1520	kWh			
CHILLER					
Produced cold :	8446	kWh			
Rejected heat :	19765	kWh			
BACKUP CHILLER (electrically driven compression)					
Produced cold :	214000	kWh			
AUXILIARY ELECTRICITY DEMAND					
Other :	1264	kWh			
COMMENTS					
COMMENTS					
Electricity includes controls, pumps and rais for the	Suncoorms	allation.			
Cooling load for backup chiller includes total coolin	Cooling load for backup chiller includes total cooling load of the plant (i.e.				
industrial and space cooling). The system was dimer	nsioned via si	imulations			
to cover about 10% of the cooling demand.					
The solar radiation data is given only for sorption of	coling deliver	or period			
Univ 2014 and Sentember 2014: April 2015 and May	2015) Augu	-+ 2014			
puty 2014 and September 2014, April 2015 and May	/ 2015). Augu	31 2017,			

June 2015, July 2015 and August 2015 were excluded due to operation issues with the collectors. Issues with the collectors also caused relatively low electrical COP during April 2015 and May 2015. Additionally, the system provided free cooling during the winter months which was not included here.

	Qualitative a	isses	sme	nt Su	nCool	
E	ral user reactions (ease of us	se. cont	trolabi	lity)		
IL I	RAL USER REACTIONS (6856 0105	50, COM	loiabi	uy,,		
e u	ser is an industrial plant (Löfbergs Lila ser has been satisfied with being a par	coffee i tofthe	roaste de velo	ry) and well accustomed to special te poment of a new technology.	chnologyprojects.	
		i o nuno	00101	prioritoria no ricconnology.		
NE	RAL ASSESSMENT					
	sa	YES	NO NO	comments		
	User/ownersatisfied ?	V	-	Unique demonstration technology. C	ne of a kind in the world	Good fee cooling oper
	User/Owner involved in the project?	4				a construction de destruction
	Qualitiy of com fort as pects	V	_	The installation only serves a portion of th	he cooling demand.	
				Comfort conditions are always met by the	e existing	
				compression chillers		
	Image and marketing aspects	V	Г			
	G G 21					
				Highly unique installation. Great marketing	for Lotbergs Lila	
	Otheraspects					•
	Otheraspects					
	Otheraspects					

COLDINNOV:

Task 53 👯					
	Activity A2				
Company	COLDINNOV				
Address	HEAD OFFICE				
	1 IMPASSE DE LISIEUX				
Country	31300 TOULOUSE - France				
Contact	LIONEL BATAILLE				
	Tel. +33 (0)5 31 54 16 64				
Brand name	FREECOLD				
Cooling power range	2.6 Kw				

<u>System</u>

PV COLLECTORS					
Total area : Tilt angle : Orientation : Typical peak power :	9,6 45 (1500	6 m² (aperture 6 ° (0=horiz) 9 ° (0=south ; 9 9 Wc	earea) 90 =west ; 270:	=east)	
Type :	Polycristalli	ne			
Model : Manufacturer : Country :	A250-P Atersa Spain				
SOLAR INVERTERS	None				
BATTERIES	None				
HEAT PUMP					
Type :	Piston Air to air				
Model : Manufacturer : Country :	S5H09 SANDEN JAPAN				
Cooling capacity : Electrical consumption in cooling mode : EER :	2,5 0,8 3.1	i kW kW	Conditions :	Tout = 35 °C	Tin = 20 °C
	-,-				

Task 53 👯

|--|

TOTAL INVESTMENT COST			
Total :	2100	€	
Lifetime :	20	у	
Annual cost :	105	€/у	
Specific costs :	1400	€/kWp	
	808	€/kWcooling	
SOLAR PV COLLECTORS			
Total :	1500	€	
Lifetime :	25	У	
Annual cost :	60	€/γ	
Specific costs :	1000	€/kWp	
Not including :	installation 5	500€	
	structure 150)€	
	other (wiring) 50€		

Investment - Planning & Design

	FEASIBILITY STUDY						
	Total :	100 €					
	Specific costs :	67 €/kWn					
	specific costs .	0 E/kWp					
		U E/KVV					
	PLANNING						
	FERMINIS						
	Total :	100 €					
	Specific costs :	67 €/kWp					
	opeonio costo i	0 £/kW					
		UCINV					
	COMMISSIONING						
	commissionits						
	Total :	100 €					
	Specific costs :	67 €/kWp					
		0 €/kW					
	<u> </u>						
COMMENTS ON FEASIBILITY STUDY.							
	PLANNING AND COMMISSIONING						
	VERY EASY TO INSTALL. IT CAN BE DONE BY AN USUAL						
	AIRCONDITIONING INSTALLER: units are delivered ready to connect						
		,					
	ANNUAL MAINTENANCE						
	Total	100 €					
	Specific costs :	67 £/v kWp					
	specific costs.	0 E/y KWP					
		U €/ Y.KVV					

Results from system operation

MONITORING PERIOD						
From :	1st March 20	12				
Until : 28th February 2013						
Periods of sytem/monitoring interruption : None						
PV PANELS						
Useful energy from collector :	5632	kWh				
Specific PV yield :	1173,3	kWh/kWp				
HEAT PUMP						
Drinving electric input :	19430	kWh				
Produced cold :	2297	kWh				
COP_elec:	0,12	-				
CHILLER						
Produced cold :	8446	kWh				
Rejected heat :	19765	kWh				
AUXILIARY ELECTRICITY DEMAND						
Pumps, collector circuits :	5185	kWh				
COMMENTS						

OUR SOLUTIONS ARE MAINLY INSTALLED IN WESTERN AFRICA. WE HAVE NOT ANY OPERATING RESULTS FROM USERS

	Qualitative		COLDINNOV	
Tast	c 53 🌾			FREECOLD
NERAL USE	RREACTIONS (ease of u	se, controlability,)		
WORKS LIK	(E A USUAL SPLIT AIRCONDIT	TIONING UNIT		
NERAL ASS	SESSMENT Si	atisfied or not	comments	
User/o User/C	wner satisfied ?)wner involved in the project?	YES NO		
Qualitiy	of comfort aspects			
Image a	and marketing aspects			
Other as	spects			

PERFORMANCE ASSESSMENT

Activity A2

Company	Solarinvent srl
Address	Via dell'Autonomia 88 Sant'Agata Li Battiati (CT) 95030
Country	Italy
Contact	Pietro Finocchiaro
	info@solarinvent.com
Brand name	Freescoo
Cooling power range	2 - 10 kW

Heat sources						
COLLECTORS						
Total area :	2,4	m²				
Tilt angle :	25	° (0				
Orientation :	0	° ((

2,4 m² (aperture area) 25 ° (0=horiz) 0 ° (0=south ; 90 =west ; 270=east)

Type : Flat plate

Model : SunCool Manufacturer : ClimateWell + Hewalex Country : Sweden + Poland

Type of installation : Fully integrated

Heat transfer medium : Air

Flow control : Variable

SOLAR HEAT STORAGE None

AUXILIARY HEATING SYSTEM None

COMMENTS

Water based solar collector can also be used with small changes in the configuration of the machine

Cooling Equipment

CHILLER	None	
HEAT REJECTION	None	
DESSICANT EVAPORATIVE COOLING SYSTEM (DEC)		
Sorption process :	Solid	
Sorption material :	Silicagel	
Manufacturer :	Solarinvent	
Country :	Italy	
Nominal air volume flow rate :	500	m3/h
Minimal air volume flow rate :	50	m3/h
BACKUP CHILLER	None	

COLD STORAGE None

COMMENTS

The data refer to the stand alone solar autonomus Solar DEC machine

COMMENTS

The control strategy of the system is the following. If there is no need for cooling in the building, solar energy is used to regenerate the adsorption material of the desiccant beds. In particular, one bed is regenerated until the temperature difference between the air at the outlet of the solar collector and the air coming out from the bed is higher than a fixed threshold. If the difference is lower and the solar fan is at the minimum speed, the control system commutes to the other bed for its regeneration. If the system has to provide cooling, the main fan is used to provide fresh and dehumidified air to the building. Building temperature and humidity can be controlled independently. Temperature can be adjusted controlling the speed of the main fan and by the status of the recirculation pump of the wet heat exchangers. Humidity can be adjusted by controlling the status of the cooling tower pump and partially controlling the speed of the main fan. A variation in the temperature of adsorption material will result in a different dehumidification capacity and consequently, this property can be used to adjust the humidity in the conditioned space. When cooling is required, the operation of the two adsorption beds is based on the humidity of the return air. If the humidity set-point is exceeded, then the control system activates the commutation procedure from one bed to the other. Before the end of this phase a pre-cooling of the bed which was operated in regeneration mode is carried out, preparing it for the next operation in adsorption mode.

Results from system operation

MONITORING PERIOD	
From :	1st July 2015
Until :	18th August 2015
Periods of sytem/monitoring interruption :	from 17.07 to 23.07, 31.07, 13
COLLECTORS	
Radiation gain, collector surface :	319 kWh/m ²
Useful energy from collector for cooling operation (driving heat):	483 kWh
DESSICANT EVAPORATIVE COOLING SYSTEM (DEC)	
Regeneration heat input :	483 kWh
Produced cold :	533 kWh
Produced cold during desiccant wheel operation only :	533 kWh
COP_dessicant :	1,1 -
Solar coverage of regeneration heat :	1 -
AUXILIARY ELECTRICITY DEMAND	
Fans air handling unit :	29,1 kWh
Fans heat rejection, heat driven chiller :	10,4 kWh
Other :	2,1 kWh

COMMENTS

Data refer only to the cooling operation during the monitored summer period. The electricity consumption doesn't take into account the PV production of the PVT collector. The real electricity taken from the grid is 10,5 kWh for the considered time period.

Investment - Material

TOTAL INVESTMENT COST		
Total : Lifetime : Annual cost : Specific costs :	7500 € 15 γ 500 €/γ 3125 €/m ² 15 €/(m3/h)	
SOLAR COLLECTORS		
Total :	1500 €	
Lifetime :	15 y	
Annual cost :	100 €/y	
	625 €/m²	
Including :	installation, structure, PV panels, solar batteries, solar controller, piping, pumps,	
COLD PRODUCTION		
Total cost :	3500 €	
Lifetime :	15 y	
Annual cost :	233 €/y	
Specific costs :	1458 €/m²	
	7 €/(m3/h)	
Including :	installation, heat rejection, DEC, other	
ELECTRIC, CONTROL AND MONITORING		
Total :	2500 €	
Lifetime :	15 y	
Annual cost :	167 €/γ	
Specific costs :	1042 €/m²	
	5 €/(m3/h)	
Including :	installation, monitoring, control, electric panels	
	-1	

Investment - Planning & Design

COMMISSIONING							
: Total Specific costs	800 333 1,6	€ €/m² €/(m3/h)					
ANNUAL MAINTENANCE							
Total :	50	€					
Specific costs :	21	€/y.m²					
	0,1	€/y.(m3/h)					

A LOUGH PROGRAMME ALL ENERGY AGENCY New generation solar cooling & heating systems (PV or thermally driven) / <u>task53.iea-shc.org</u>

	Qualitative a	isses	sme	nt freescoo
	sk 53 👯	se, conti	rolabi	ility,)
R/	ALASSESSMENT			
	sa	tisfied of YES	NO	comments
U	Jser / owner satisfied ?	V		The unit whose data are presented was tested at research in
U	Jser / Owner involved in the project?	v		
C	Qualitiy of comfort aspects		2	The unit was too small for the specific room to ensure an
				adeguate comfort in terms of temperature control. An additional conventional split unit has to be operated. In general ventilation rate and humidity control was ok.
Ir	mage and marketing aspects	V	Г	In general, feedbacks and comments received are very
				positive, especially because of the compactness of the
				solution proposed. The interest from industry stakeholders is relevant.
0)ther aspects			solution proposed. The interest from industry stakeholders is relevant.
0)ther aspects			solution proposed. The interest from industry stakeholders is relevant.

<u>SJTU</u>:

Activity A2

Company	SJTU	
Address	Sino-Italian Green Energy Laboratory	/ Shanghai Jiao Tong University
	800 Dongchuan Road	
Country	Shanghai 200240, China	
Contact	Yanjun Dai	
	E-mail: yjdai@sjtu.edu.cn	
Brand name	Gree	
Cooling power range	33.5 kW	

<u>System</u>

PV COLLECTORS	i.			
Total area :	71.2	m² (apertur	e area)	
Tilt angle :	20	° (0=horiz)	,	
Orientation :	0	° (0=south ;	90 =west : 270=east)	
Typical peak power :	12190	Wc		
Type :	Polycristall	ine		
Model :	JKM265P-60	& JKM260PP-	-60	
Manufacturer :	Jinko Solar			
Country :	China			
SOLAR INVERTERS				
SOLAR INVERTERS				
Location :	Outdoor			
Brand :	Gree			
Typical nominal DC power :	12,5	kW		
Number of phases :	3	-		
Inverter efficiency :	97,6	%		
BATTERIES	None			
	0.11/000.10			
AUXILIARY POWER SOURCE	Grid (380 V)			
HEAT PUMP				
Type :	Scroll			
	Brine to wa	ter		
	CMU VOODU	1.4/4		
Model :	GIVIV-1535W	WI/A		
Manufacturer:	China			
Country :	unina			
Chilled fluid type :	R410a			
Cooling capacity :	33.5	kW		
ectrical consumption in cooling mode :	8,41	kW		
EER :	3.98	-	Conditions Text = 35	°C Tint = 27 °C
Heating capacity :	37.5	kW		
ctrical consumption in heating mode :	9	kW		
COP :	4.17	-	Conditions Text = 7 °	C Tint = 20 °C
	.,			

Working mode 1: photovoltaic air conditioning system & power generation mode

Working mode 2: photovoltaic air conditioning system and power comsuption mode

Investment - Material

TOTAL INVESTMENT COST				
Total :	24600	£		
Lifetime :	20	Y		
Annual cost :	1230	€/y		
Specific costs :	2050	€/kWp		
	734	€/kWcooling		
SOLAR PV COLLECTORS				
Total :	12400	£		
Lifetime :	25	У		
Annual cost :	496	€/y		
Specific costs :	1033	€/kWp		
Including :	installation	(2000)		
	structure (20	00)		
	other (wiring	g) (1400)		
COLD PRODUCTION				
Total :	11800	€		
Lifetime :	20	Y .		
Annual cost :	590	€/y		
Specific costs :	983	€/kWp		
	352	€/kWcooling		
ELECTRIC, CONTROL AND MONITORING				
		-		
Total :	400	£		
Lifetime :	15	Y		
Annual cost :	27	€/y		
Specific costs :	33	€/kWp		
	12	€/kWcooling		
Including :	electric pane	els (400)		
COMMENTS		- 4h		
The PVAC system uses the "e controller" t	o demonstrat	e the power generation and		
comsuption, to controll all the indoor units, as well as to do some data processing.				

Investment - Planning & Design

COMMISSIONING		
Total : Specific costs :	200 17	€ €/kWp
ANNUAL MAINTENANCE		
Total : Specific costs :	300 25	€ €/y.kWp
COMMENTS		
When PV generated power is more than Ad demand, PV power will give priority to the residual power will be sent to the grid. Wh is less than the AC system consumption de draw power from the grid in addition to the system. The annual PV generated power al AC system consumption demand.	C system con AC system, a en PV gener mand, AC sys e PV power g lmost cover t	sumption and then the ated power stem will generation he annual

Results from system operation

MONITORING PERIOD		
From :	23rd April 20	15
Until :	31st Decemb	er 2015
Periods of sytem/monitoring interruption :	5	
PV PANELS		
Radiation gain, global horizontal :	720	kWh/m²
Radiation gain, collector surface :	874	kWh/m²
Gross energy production of collector :	9213	kWh
Useful energy from collector :	8752	kWh
Specific DV viold :	719	kWh/kWn

COMMENTS

1. During the monitoring period, the PVAC system has 5 periods of interruption manily because of the system upgrading or modifying. 2. When the PV generated DC power is no more than the AC system consumption demand, the AC system consumes the DC power directly instead of converting the DC power into AC power, resulting in almost no loss during the direct consumption. When the PV generated DC power is more than the AC system consumption demand, the residual PV generated power is sent to the grid and there is some loss from converting the DC power into the AC power.

A COUNCE MORGANINE AL ENERGY AGENCY New generation solar cooling & heating systems (PV or thermally driven) / <u>task53.iea-shc.org</u>

	Qualitative	assessme	nt	SJTU
Task	C 53 🔆			GREE #
IERAL USE	R REACTIONS (ease of us	se, controlabi	lity,)	
VORKS LIK	E A USUAL SPLIT AIRCONDIT	TONING UNIT	F ill	
IERAL ASS	ESSMENT			
	Sa Marine State	YES NO	comments	
User / ov User / O	wner satisfied ? wner involved in the project?		VERY SATISFIED CONSTANT CONTROL	
Qualitiy (of comfort aspects			
			very comfortable	
Image ai	nd marketing aspects		very comfortable	
Image a	nd marketing aspects		very comfortable	
Image a	nd marketing aspects		very comfortable	
Image a Other as	nd marketing aspects pects		very comfortable	

PERFORMANCE ASSESSMENT

Activity A2

Company	FRIGICOLL	
Address	OFICINA CENTRAL	
	Blasco de Garay, 4-6	
Country	08960 Sant Just Desvern (Barcelona),	España
Contact	Eduardo Romano	
3	Tel. 93 480 33 22	
Brand name	KAYSUN	
Cooling power range	3.5 kW	

<u>System</u>

PV COLLECTORS		
Total area :	5	m² (aperture area)
Tilt angle :	45	° (O=horiz)
Orientation :	0	° (0=south ; 90 =west ; 270=east)
Typical peak power :	705	Wc
Type :	Monocristal	line
Model :	EUP-235W	
Manufacturer :	Eurener	
Country :	Spain	
SOLAR INVERTERS	None	
BATTERIES	None	
AUXILIARY POWER SOURCE	Grid (230 V)	
HEAT PUMP		
_	- U	
Type :	Scroll	
	Air to air	
No. del 1		
Iviodei :	SUTTE SOLAR	
Manufacturer .	CDAIN	
country.	SPAIN	
Cooling capacity :	35	kw.
Electrical consumption in cooling mode :	1	kW
FFR :	35	- Conditions : Text = 7 °C Tint = 20 °C
Heating capacity :	3.5	conditions. Text - / C Thit - 20 C
Electrical consumption in heating mode :	1	
COP ·	3.5	Conditions : Text = 35 °C Tint = 27 °C
	0,0	

Task 53 👯

UNITY ACCENT ACCENT OF A CONTROL A CONTROL OF A CONTROL O

Investment - Material	
TOTAL INVESTMENT COST	
Total :	2500 €
Lifetime :	20 y
Annual cost :	125 €/y
Specific costs :	3546 €/kWp
	714 €/kWcooling
SOLAR PV COLLECTORS	
Total :	700
Lifetime :	25 y
Annual cost :	28 €/y
Specific costs :	993 €/kWp
Not including :	installation 500 €
	structure 150 €
	other (wiring) 50 €
COLD PRODUCTION	
	1000 0
lotal :	1800 €
Lifetime :	20 y
Annual cost :	90 €/γ
Specific costs :	2553 €/kWp
	514 €/kWcooling
Including :	installation work, compression heat pump, heat rejection

Investment - Planning & Design

FEASIBILITY STUDY		
Total :	100	€
Specific costs :	142	€/kWp
PLANNING		
		-
lotal :	100	€
Specific costs :	142	€/kWp
COMMISSIONING		
COMMISSIONING		
Total :	100	£
Specific costs :	142	€ €/kWn
Specific costs i	0	€/kW
	Ŭ	c <i>y</i> k t
COMMENTS ON FEASIBILITY STUDY,		
PLANNING AND COMMISSIONING		
VERY EASY TO INSTALL. IT CAN BE DONE BY	AN USUAL	
AIRCONDITIONING INSTALLER		
ANNUAL MAINTENANCE		
Total :	30	€
Specific costs :	43	€/y.kWp
ANNUAL OPERARTIONS		
Total :	200	€
Specific costs :	284	€/kWp
	57	€/kW

Results from system operation

MONITORING PERIOD		
From :	31st Septem	ber 2012
Until :	1st October 2	2013
Periods of system/monitoring interruption :	None	
PV PANELS		
Radiation gain, global horizontal :	1722	kWh/m²
Radiation gain, collector surface :	1877	kWh/m²
Gross energy production of collector :	1125	kWh
Useful energy from collector :	791	kWh
Useful energy electricity from panels for cooling operation :	436,5	kWh
Useful energy from panels for space heating / DHW :	354,4	kWh
Specific PV yield :	1122	kWh/kWp

AUXILIARY ELECTRICITY

Electricity from grid :	678,9	kWh
Auxiliary electricity for cooling operation :	239,3	kWh
Auxiliary electricity for space heating / DHW :	439,6	kWh

HEAT PUMP		
Drinving electric input :	1470	kWh
Produced cold and heat :	6523	kWh
COP_elec :	4,44	-
Solar coverage of driving electricity :	0,54	-

AUXILIARY ELECTRICITY DEMAND

Heat pump : 678,9 kWh

COMMENTS

The unit can work on heating and cooling mode. It takes the availabla electricity from PV panels and the needed electricity from the grid

Horario de 8 a 20 h	E_PV (kWh)	E_RED (kWh)	E_TOT (kWh)	E_PV,RED (kWh)	E_U (kWh)	EER_Maq (-)	EER_Inst (-)	Cont. Sol CS (%)	F. Prod F (%)	T_ext (ºC)	T_int (ºC)
MAYO	66,0	25,8	91,8	116,8	519,5	6,50	23,12	82,5%	64,9%	24,0	23,3
JUNIO	67,1	18,7	85,7	125,1	514,1	6,00	27,54	78,2%	53,6%	26,8	23,1
JULIO	95,1	75,6	170,7	129,5	720,0	4,22	9,52	55,7%	73,4%	31,1	25,0
AGOSTO	84,8	57,0	141,8	114,7	655,2	4,62	11,49	59,8%	73,9%	30,6	25,0
SEPTIEMBRE	68,2	29,9	98,2	101,0	545,1	5,55	18,21	69,5%	67,5%	27,8	24,3
OCTUBRE	55,4	32,2	87,7	83,6	524,4	5,98	16,26	63,2%	66,3%	26,1	24,1
MODO FRÍO	436,5	239,3	675,8	670,7	3478,4	5,15	14,54	64,6%	65,1%	27,7	24,2
Horario de 8 a 20 h	E_PV (kWh)	E_RED (kWh)	E_TOT (kWh)	E_PV,RED (kWh)	E_U (kWh)	COP_Maq (-)	COP_Inst (-)	Cont. Sol CS (%)	F. Prod F (%)	T_ext (°C)	T_int (ºC)
NOVIEMBRE	49,36	65,31	114,64	56,49	465,24	4,06	7,12	43,1%	87,4%	14,9	25,9
DICIEMBRE	51,73	89,47	141,18	56,44	551,67	3,91	6,17	36,6%	91,7%	15,2	24,1
ENERO	61,88	84,97	146,84	70,36	575,30	3,92	6,77	42,1%	87,9%	15,1	25,4
FEBRERO	63,98	83,02	147,00	75,74	532,98	3,63	6,42	43,5%	84,5%	13,6	25,2
MARZO	68,87	72,00	140,87	93,02	531,46	3,77	7,38	48,9%	74,0%	16,8	25,7
ABRIL	58,53	44,79	103,32	101,76	387,67	3,75	8,65	56,6%	57,5%	19,1	24,0
MODO CALOR	354,4	439,6	793,8	453,8	3044,3	3,83	6,93	44,6%	78,1%	15,8	25,0
TOTAL	790,9	678,9	1469,7	1124,5	6522,7	4,44	9,61	53,8%	70,3%	21,7	24,6

3	Qualitative a	asses	sme	ent	FRIGICOLL
Та	sk 53 🐇				Kaysun by frigicoll
ENERAL	USER REACTIONS (ease of us	se, cont	trolab	ility,)	
WORK	S LIKE A USUAL SPLIT AIRCONDIT	IONING	G UNIT	Tr 1	
ENERAL	ASSESSMENT	tisfied	orno	t comments	
	990 2000 2001	YES	NO	t commente	
Us	er / owner satisfied ?	1		VERY SATISFIED	
05	er / Owner involved in the project?	N.	1	CONSTANT CONTROL	
0					
Qui		passer -	-		
	alitiy of comfort aspects	V	Г	-	
	alitiy of comfort aspects	v	Γ	ок	
	alitiy of comfort aspects	ঘ	Г	ок	
Ima	alitiy of comfort aspects age and marketing aspects	ব	Г	ок	
Ima	alitiy of comfort aspects age and marketing aspects	ব	Г	OK	
Ima	alitiy of comfort aspects age and marketing aspects	<u>ন</u>	Г	ОК П S A SPLIT	
Ima	alitiy of comfort aspects age and marketing aspects	<u>ব</u>	Е	OK IT S A SPLIT	
Ima Oth	alitiy of comfort aspects age and marketing aspects er aspects	<u>য</u>	Г	OK Π S A SPLIT	
Ima Oth	alitiy of comfort aspects age and marketing aspects er aspects	ব	Г		

PERFORMANCE ASSESSMENT

PURIX:

Task	· 53 👯	SOLAR HEATING & COOLING PROGRAMME INTERNATIONAL ENERGY AGENCY
	Activity A2	
<u>Company</u> <u>Address</u>	PURIX Langogade 17	
Country	2100 Copenhagen	
Contact	Lars Munkoe lars.munkoe@purixcom	
Brand name	+45 22353151	
Cooling power range	2,5kW split system. Modular	/-
	25kW cooling capacity.	
Heat sources		
COLL	CTORS	
Tota	l area : 4,8 m² (aperture	area)
AUXILIARY HEATING S	YSIEM	
District h	ating : 3,1 kW	
Central he	ating: 3.1 kW	

Cooling Equipment

CHILLER			
Model :	PURIX A25S		
Manufacturer : PURIX			
Country : DK			
Nominal chilling capacity :	2,5	kW	
COP_thermal :	0,8	-	
Distributed chilled medium temperature :	13	°C	
Nominal driving heat temperature :	80	°C	

HEAT REJECTION integrated in A25S chiller

Investment - Material

TOTAL INVESTMENT COST		
Total :	4425	€
Lifetime :	20	у
Annual cost :	221	€/у
Specific costs :	922	€/m²
	1770	€/kW

SOLABCOOL:

Task	Activity A2	SOLAR HEATING & COOLING PROGRAMME INTERNATIONAL ENERGY AGENCY
Company	solabCool BV	
Address	Stenograaf 1 6921EX Duiven	
Country	The Netherlands	
Contact	h.debeijer@ares-rtb.nl	
Brand name	SolabPump / SolabChiller	
Cooling power range	3 - 5kW	
Heat sources		
AUXILIARY HEATING S	SYSTEM	
District heating : 8 kW		
COM	MENTS	
Several heat sources can be used. For this particular system district heating is used. Tests		
with Solar systems indicate similar performance.		
District heating powe	r is at nominal conditions	

Cooling Equipment

CHILLER			
Model :	SolabChiller		
Manufacturer :	: SolabCool		
Country :	Netherlands		
Nominal chilling capacity :	4,5	kW	
COP_thermal :	0,6	-	
Distributed chilled medium temperature :	17	°C	
Nominal driving heat temperature :	70	°C	
Chiller is driven by : solar thermal heat + auxiliary heat source			
COMMENTS			

Silicagel-water adsorption cooling machine

COMMENTS

Situation before intallation: A domestic building which is connected to a district heating network (CHP). The 3 storey building has a 165m2 floor area. The building is completely heated by floor heating which is separated into respectively 3zones at ground floor, 4 at 1st floor & 2 at 2nd floor.

A SolabChiller and freezing protection unit are installed to distribute cooling using the Floor heating system. The cooling system is protected against freezing by using a water-glycol mixture in the secondary circuit.

The Cooling demand is determined by a thermostat which is placed in the living room, a active dewpoint protection to prevent condensation risks which are caused by low water temperatures in specific conditions.

Results from system operation

MONITORING PERIOD		
From :	23rd July 201	4
Until :	1st October 2	2015
Periods of sytem/monitoring interruption :		
CHILLER		
Driving heat input :	929	kWh/m²
Produced cold :	542	kWh
COP_thermal :	0,58	-
AUXILIARY ELECTRICITY DEMAND		
Other :	64	kWh

COMMENTS

The electric energy is considering all electric energy used. This is including drycooler and all pumps. No separate monitoring of individual components. Additional electric consumption which is used for monitoring equipment is not measured since it is not relevant to commercial machine.

Machine has cooled for 194hours

Skc 53 (%) CAL USER REACTIONS (ease of use, controlability,) CAL ASSESSMENT satisfied or not YES NO comments User / owner satisfied ? Image and marketing aspects Image and marketing aspects		
Controlability,) Control control control Control control <td colspa="</th"><th></th></td>	<th></th>	
Satisfied or not comments YES NO User / owner satisfied ? Image and marketing aspects Image and marketing aspects Image		
Satisfied or not comments YES NO User / owner satisfied ? Image and marketing aspects Image and marketing aspects Image and marketing aspects		
Satisfied or not comments YES NO User / owner satisfied ? Image and marketing aspects I		
Satisfied or not comments YES NO User / owner satisfied ? Image and marketing aspects I		
RAL ASSESSMENT satisfied or not comments YES NO User / owner satisfied ? Image and marketing aspects Quality of comfort aspects Image and marketing aspects		
satisfied or not comments YES NO User / owner satisfied ? Image and marketing aspects Qualitiy of comfort aspects Image and marketing aspects		
User / owner satisfied ? User / Owner involved in the project? Qualitiy of comfort aspects Image and marketing aspects		
User / Owner involved in the project?		
Qualitiy of comfort aspects Image and marketing aspects		
loads in high ambient temperature. User did turn off machine during night which did machine to cool the buidlign during night. Image and marketing aspects	peak cooling	
Image and marketing aspects	id not allow the	
Other aspects		

PERFORMANCE ASSESSMENT

Activity A2

Company	YAZAKI ENERGY SYSTEM CORPORATION				
Address	2012, 2F Changfugong Office Building				
	26 Jianguomen Wai Avenue, Beijing				
Country	CHINA				
Contact	PHONE: 0086-10-6513-4747 (Ext: 606)				
	FAX: 0086-10-6513-4746				
Brand name	WFC-SC10				
Cooling power range	35.2kW				

Heat sources

COLLECTORS

Total area :	100 m² (aperture	e area)	Total area 2 :	11 m² (aperture	area)
Tilt angle :	19 ° (0=horiz)		Tilt angle :	70 ° (0=horiz)	
Orientation :	0 ° (0=south ; 9	90 =west ; 270=east)	Orientation :	90 ° (0=south ; 9	0 =west ; 270=east)
Type :	Vaccum tube ; heat pipe		Type :	Vaccum tube ; heat pipe	
Model :	160-58-50Horizontal Type		Model :	160-58-25Gravity Type	
Manufacturer :	SANGLE		Manufacturer :	SANGLE	
Country :	China		Country :	China	
Type of installation :	Flat roof				
Heat transfer medium :	Water				
Flow control :	Low flow				
SOLAR HEAT STORAGE					
Total volume :	5 m3				
Number of storage tanks :	1 -				
Storage medium :	Water				
ALIXILIARY HEATING SYSTEM	None				

Cooling Equipment

Type : Absorption	
Model : WFC-SC10	
Manufacturer : YAZAKI ENERGY SYSTEM CORP	
Country : JAPAN	
Nominal chilling capacity : 35.2 kW	
COP thermal 0.7 -	
Distributed chilled medium temperature : 11->15 °C	
Nominal driving heat temperature : 70->95 °C	
Driven by : solar thermal heat (solar autonomous operation	
briver by . Solar thermanieat (Solar autonomous operation	/
HEAT REECTION	
Turs : Dry seeling (closed)	
Type : Dry cooling (closed)	
Model: DHHC-20	
Manufacturer : DAHUA	
Country : CHINA	
Thermal heat rejection capacity : 50 kW	
Nominal electricity consumption (fan) : 66 kW	
Nominal electricity consumption (iai) . 0,0 kw	
BACKUP CHILLER	
BACKUP CHILLER	
BACKUP CHILLER Type : ?	
BACKUP CHILLER Type : ?	
BACKUP CHILLER Type : ? Model : A-C12-AC-S2	
BACKUP CHILLER Type : ? Model : A-C12-AC-S2 Manufacturer : LIPMAN	
BACKUP CHILLER Type : ? Model : A-C12-AC-S2 Manufacturer : LIPMAN Country : CHINA	
BACKUP CHILLER Type : ? Model : A-C12-AC-S2 Manufacturer : LIPMAN Country : CHINA	
BACKUP CHILLER Type : ? Model : A-C12-AC-S2 Manufacturer : LIPMAN Country : CHINA Chilling capacity : 29,3 kW	
BACKUP CHILLER Type : ? Model : A-C12-AC-S2 Manufacturer : LIPMAN Country : CHINA Chilling capacity : 29,3 kW Chilled fluid type : water	
BACKUP CHILLER Type : ? Model : A-C12-AC-S2 Manufacturer : LIPMAN Country : CHINA Chilling capacity : 29,3 kW Chilled fluid type : water COP el : 2.84 -	
BACKUP CHILLER Type : ? Model : A-C12-AC-S2 Manufacturer : LIPMAN Country : CHINA Chilling capacity : 29,3 kW Chilled fluid type : water COP_el : 2,84 - Chilled medium temperature : 7 °C	
Nonimal electricity consumption (rail) : BACKUP CHILLER Type : ? Model : A-C12-AC-S2 Manufacturer : LIPMAN Country : CHINA Chilling capacity : 29,3 Chilled fluid type : water COP_el : 2,84 Chilled medium temperature : 7	
Nominal electricity consumption (rain) : BACKUP CHILLER Type : ? Model : A-C12-AC-S2 Manufacturer : LIPMAN Country : CHINA Chilling capacity : 29,3 KW Chilled fluid type : Water COP_el : COP_el : 2,84 Chilled medium temperature : 7 °C COLD STORAGE	
Noninal electricity consumption (ran) : BACKUP CHILLER Type : ? Model : A-C12-AC-S2 Manufacturer : LIPMAN Country : CHINA Chilling capacity : 29,3 KW Chilled fluid type : COP_el : 2,84 Chilled medium temperature : 7 °C COLD STORAGE	
BACKUP CHILLER Type : ? Model : A-C12-AC-S2 Manufacturer : LIPMAN Country : CHINA Chilling capacity : 29,3 kW Chilled fluid type : water COP_el : 2,84 - Chilled medium temperature : 7 °C COLD STORAGE	
BACKUP CHILLER Type : ? Model : A-C12-AC-S2 Manufacturer : LIPMAN Country : CHINA Chilling capacity : 29,3 kW Chilled fluid type : water COP_el : 2,84 - Chilled medium temperature : 7 °C COLD STORAGE Total volume : 1,5 m3 Number of storage tanks : 1 -	
BACKUP CHILLER Type : ? Model : A-C12-AC-S2 Manufacturer : LIPMAN Country : CHINA Chilling capacity : 29,3 kW Chilled fluid type : water COP_el : 2,84 - Chilled medium temperature : 7 °C COLD STORAGE Total volume : 1,5 m3 Number of storage tanks : 1 - Storage medium : Water	

SENR:

Solution 1:

Task 53 👯

Investment - Material

TOTAL INVESTMENT COST		
Total :	2500	€
Lifetime :	20	у
Annual cost :	125	€/у
Specific costs :	3846	€/kWp
	694	€/kWcooling
SOLAR PV COLLECTORS		
Total :	700	€
Lifetime :	25	у
Annual cost :	28	€/у
Specific costs :	1077	€/kWp
Not including :	installation 5	600€
	structure 150)€
	other (wiring	g) 50 €

Investment - Planning & Design				
CEACIDILITY OT UDV				
FEASIBILITY STUDY				
Total :	50 €			
Specific costs :	77 €/kWp			
	39 €/kW			
PLANNING				
T-1-1-	50.0			
Iotal :	50 €			
Specific costs :	// €/kwp			
COMMISSIONING				
Total :	100 €			
Specific costs :	154 €/kWp			
COMMENTS ON FEASIBILITY STUDY,				
PLANNING AND COMMISSIONING				
Specifics studies for panels mounting				
AC commissioning is the same as normal A	C inverter			

ANNUAL MAINTENANCE Total : 180 € Specific costs : 277 €/y.kWp ANNUAL OPERATION Total : 140 € Specific costs : 215,38 €/kWp 38,89 €/kW

Results from system operation

MONITORING PERIOD		
From :	15th January	2015
Until :	1st Decembe	er 2015
Periods of sytem/monitoring interruption :	None	
PV PANELS		
Radiation gain, global horizontal :	2191	kWh/m²
Useful energy from collector :	1484	kWh
Specific PV yield :	2283	kWh/kWp
AUXILIARY ELECTRICITY		
Electricity from auxiliary energy sources (grid) :	154	kWh
Auxiliary electricity for cooling operation :	154	kWh

HEAT PUMP	HEAT PUMP NB : only cooling				
Drinving electric input :	1528	kWh			
Produced cold :	7442	kWh			
COP_elec :	4,87	-			
Solar coverage of driving electricity :	0,9	-			
CHILLER	-				
Produced cold :	8446	kWh			
Rejected heat :	19765	kWh			

AUXILIARY ELECTRICITY DEMAND

Pumps, collector circuits :

5185 kWh

COMMENTS

OUR SOLUTIONS ARE MAINLY INSTALLED IN WESTERN AFRICA. WE HAVE NOT ANY OPERATING RESULTS FROM USERS

	SENR				
Tas	k 53 👯	se, cont	rolabi	lity)	sources energies securede DIFFUSION
shed to its	maximum ECO running mode r	may not	tallow	single euro energy billing	
	05 0 0MENT				
VEDAL AC					
NERAL AS	SESSMENT	tisfied	or not	comments	
User/	owner satisfied ?	YES	NO	comments	
User/ User/ User/	owner satisfied ? Owner involved in the project?	versited YES I교	NO	comments	
User / User / User /	owner satisfied ? Owner involved in the project?	YES	or not NO	comments	
User / User / User / Qualiti	owner satisfied ? Owner involved in the project? of comfort aspects	YES VES V	NO F	comments As good as high performance	ce splits
User / User / User / Qualiti	owner satisfied ? Owner involved in the project? y of comfort aspects	YES YES I I I I I I I I I I I I I I I I I I I	or not NO	<i>comments</i> As good as high performanc	e splits
User / User / Qualiti Image	owner satisfied ? Owner involved in the project? of comfort aspects and marketing aspects	tisfied o YES I코 I코	F	<i>comments</i> As good as high performanc	ce splits
User / User / Qualiti Image	sessment satisfied ? Owner involved in the project? y of comfort aspects and marketing aspects	itisfied o YES マ マ マ		comments As good as high performanc	ce splits
User / User / Qualiti	owner satisfied ? Owner involved in the project? y of comfort aspects and marketing aspects	Itisfied YES IV IV		comments As good as high performanc	e splits
User / User / Qualiti	sessment sa owner satisfied ? Owner involved in the project? y of comfort aspects and marketing aspects	rtisfied o YES マ マ		comments As good as high performanc	e splits
User / User / Qualiti Image	sessment sa owner satisfied ? Owner involved in the project? y of comfort aspects and marketing aspects ispects	rtisfied o YES マ マ		comments As good as high performanc	se splits

SENR:

Solution 2:

Activity A2

Company	SENR	
Address	16 Av Jean Boutroux	
	44500 La Baule	
Country	France	
Contact	Patrice AUBIN	
	+33624821867	
	www.senr.fr	
	patrice.aubin@senr.fr	
Brand name	STEADY GO	
Cooling power range	14 to 246 kW	
<u>System</u>		
PV COLLECT	ORS	
Total a Tilt an Orientat	rea : 114 m² (aperture area) gle : 10 ° (0=horiz) ion : 0 ° (0=south : 90 =west : 270=east)	(options)

COP :

SRV-TECH

OUTDOOR UNIT cold / heat

PANELS

GRID

BUILDING cold / heat TERMINAL

vall mounte cassette ductable

Conditions : Tout = 35 °C Tin = 27 °C

HEAT REJECTION STRATEGY	None			
BACKUP CHILLER	None			
COLD STORAGE	None			
BUILDING VENTILATION	Natural			
DISTRIBUTION SYSTEM	8 model type	e indoor unit	S	
Distribution fluid :	air			
Nominal supply temp. :	15	°C (cooling)	45	°C (heating)
Nominal return temp. :	24	°C (cooling)	20	°C (heating)
Nominal total air flow :	2000	m3/h		- (
COOLING STRATEGY	full air condit	tionning (stri	ct conditions)	
	top cooling (no strict cond	litions with ba	ackup)
	solar alone (r	no backup)		
Design outdoor temperature :	up to 46 °C			
HEATING STRATEGY	full air condit	tionning (stri	ct conditions)	
	top cooling (no strict cond	litions with ba	ackup)
	solar alone (r	no backup)		
Design outdoor temperature :	7	°C		
Design outdoor humidity :	95	%		
COMMENTS				
COMMENTS	ly DV nower			
Optional charger for batteric backup	iy Pv power			
Gird injection full control				
Giru injection full control				

COMMENTS

The core of our technology is earasing:

Erasing consumption by piloting the application may be defined as the act which aims to reduce or temporarily move the level of electricity consumption of one or more of consumption devices.

With a level of reference determined with the user as minimum service consumption, we use payable energy only if PV production decrease below this level. Otherwhile we monitor the demand to match consumption and PV production

Investment - Material

TOTAL INVESTMENT COST		
Total :	97000	£
Lifetime :	20	Y
Annual cost :	4850	€/y
Specific costs :	149231	€/kWp
	26944	€/kWcooling
SOLAR PV COLLECTORS		
Total :	57000	£
Lifetime :	25	У
Annual cost :	1250	€/y
Specific costs :	1077	€/kWp
COLD PRODUCTION		
Total :	25000	£
Lifetime :	20	У
Annual cost :	1250	€/y
Specific costs :	38462	€/kWp
	6944	€/kWcooling
BACKUP	(optional ba	ckup through LiPO)
Total :	17000	£
Lifetime :	15	Y
Annual cost :	1133	€/y
Specific costs :	26154	€/kWp
	4722	€/kWcooling
ELECTRIC, CONTROL AND MONITORING		
Total :	3500	£
Lifetime :	20	Y
Annual cost :	175	€/γ
Specific costs :	5385	€/kWp
	972	€/kWcooling

Results from system operation

COMMENTS

All records made are not significant for analysis. Our monitoring includes 8 steps.

Each steps reduce or delate the demand od specific indoor units.

Therefore the energy saving ration for each one can be seen on the charts beside.

The saving rate depends on the level of comfort wished by user. It may vary from 10% for high comfort level to 70 or 80% for high economic running.

Other aspects

Task 53 🎇

Qualitati	ive assessm	ent	STEADY GO
Task 53 🐇			Sen solutions émergies senouverlabs DIFFUSION
RAL USER REACTIONS (ease	e of use, controlab	oility,)	· ·
omic in order to manage precisely ty as PV production may decrease s	the consumption suddenly with clou	billing using PV or not. Id appreance, Erasing inst	ire a continous service
ability when the installation is conne	ected to unsecure	d power network	
ERAL ASSESSMENT	ected to unsecure	d power network	
ERAL ASSESSMENT	satisfied or no	d power network	
ERAL ASSESSMENT	satisfied or no YES NO	d power network	
ERAL ASSESSMENT User / owner satisfied ? User / Owner involved in the proje	satisfied or no YES NO ect?	d power network t comments Yes to choose economie	es level
ERAL ASSESSMENT User / owner satisfied ? User / Owner involved in the proje Qualitiy of comfort aspects	satisfied or no YES NO ect?	d power network ot comments Yes to choose economie	es level
ERAL ASSESSMENT User / owner satisfied ? User / Owner involved in the proje Qualitiy of comfort aspects	satisfied or no YES NO Pet?	d power network ot comments Yes to choose economie All avantages of VRF install	es level
ERAL ASSESSMENT User / owner satisfied ? User / Owner involved in the proje Qualitiy of comfort aspects	satisfied or no YES NO IVES TO INCT INCT INCT INCT INCT INCT INCT	d power network ot comments Yes to choose economic All avantages of VRF install	es level

