Publication Category

Subtask B: System design, installation, operation and maintenance

Polymer Collectors with Temperature Control - Potentials for System integration Polymer Collectors with Temperature Control - Potentials for System integration
October 2016 - PDF 2.05MB
By: Alexander Thür, Katarina Maslikova
Within the Austrian research project SolPol-4/5 it is the goal to find solutions for solar thermal systems based on cheap polymer materials but with low temperature limits in order to realize significant cost reduction potentials. Therefore one major point is to keep the temperature of the solar collector (and the complete system) below the material limits which means below 100°C for cheap polymer materials. For this, several possibilities are under investigation in many research projects. One solution is to design the collector in such a way, that the performance does not allow stagnation temperatures above 100°C (temperature limited collector – TLC). Other solutions try to keep the collector performance highest possible during operation and reduce the performance during stagnation by different technical solutions (overheat controlled – OHC) like reduction of absorption characteristic at high temperatures (Föste, 2015), reduction of transmission of the transparent cover or increasing the heat losses by activating cooling processes like internal ventilation of the collector (Harrison, 2004) or using a thermosyphon driven backcooler (Thür, 2014). This simulation study based on different parameter variations estimates how different operating conditions can influence design parameters for a solar domestic hot water system (SDHW) with different collector types. For different possible market conditions, which can potentially be situated world-wide, the goal of these investigations is to find out dependencies of different design parameters depending on specific operating conditions for solar domestic hot water systems (SDHW).