HyTES
Hybrid PCM-Sensible storage systems for Single and Multi-Family Houses
William Delgado, Marcel Troxler, Reto Hendry, Philipp Roos, Ueli Schilt, Willy Villasmil, Jörg Worlitschek
Heat is crucial for the energy transition

50%
Of our energy needs are heating and cooling

60%
Are fossil-covered for this.
Energy system without seasonal heat storage (STES)
Energy system with seasonal heat storage (STES)

- Electrical grid
- Solar
- Natural gas

Sommer
- PV
- Heat Pump
- STES
- Reduction

Winter
- PV
- Heat Pump
- STES
- Winter electricity demand by up to 4 TWh_{el}
Energy use in Switzerland
Large demand for residential heat

Only 1/3 of total heat demand can be potentially covered using medium to large scale thermal networks.

Remaining 2/3 require smaller scale single building solutions (Single and Multi-Family Houses)

Challenge for small-scale storages
Exponential increase of investment costs
Seasonal storage in buildings
OPTSAIS - Considered scenarios

Scenario 1
Integrated in the building

Scenario 2
Buried underground

Solar collectors
Storage tank
Floor heating
Storage tank with vacuum insulation
Cases of scenario 1
OPTSAIS - New building and retrofit

Scenario 1
Integrated in the building

New building

Retrofit

Solar collectors

Floor heating

Storage tank
OPTSAIS MAIN FINDINGS

CAPEX comparison

- **Loss of living space**
- **Building reconstruction**
- **Installation costs**
- **Components**

CAPEX [kEUR]

Scenario 1 (retrofit)
- Components
- Installation costs
- Excavation costs
- Loss of living space

Scenario 1 (new building)
- Components
- Installation costs
- Excavation costs
- Loss of living space

Scenario 2
- Components
- Installation costs
- Excavation costs
- Loss of living space

Legend:
- C_{com}
- C_{inst}
- C_{const}
- $C_{imo, loss}$

Notes:
- The diagram compares the cost components for different scenarios, including installation costs, components, and loss of living space due to building reconstruction.
- Scenario 1 involves retrofitting an existing building, while Scenario 2 involves building a new structure.
Motivation from OPTSAIS

- Storage inside the building too expensive → placement outside the ground
- Increasing energy density with Phase Change Materials (PCM)
- Solar thermal energy limited in flexibility → PV + heat pump
Introduction HyTES - Goals

Cost reduction by reducing the volume of a seasonal hybrid heat storage system

Use of water + PCM as storage medium

• Loading of the storage tank with heat pump + PV
• Coverage of the heat demand (room heating + BWW) of a representative MFH
• Solar coverage (degree of self-sufficiency) from 70 to 100%

Research questions:

• To what extent can you reduce the storage volume or costs?
• What is the optimal TES configuration in terms of PCM, capsule shape, capsule size, etc.
• What is the optimal system configuration in terms of storage size, PV area and HP performance?
• What is the cost composition of the individual system components?
• How do costs correlate with the degree of self-sufficiency?
• How can the domestic hot water be treated cost-effectively?
Methodology

Optimization variables (blue)

- Weather data
- Orientation
- Angle
- PV area

Predefined reference scenario (orange)

- SH profile
- DHW profile
- Power profile
- Building parameters
- Location

Power grid

- HP power

Hybrid TES

- Soil T. profile
- TES geometry
- TES insulation
- PCM
 - Capsule geom.
 - # of layers
 - Height of layer
 - Layer position

Storage concepts:
- Vacuum insulated storage
- FRP storage (energy4me)
- GEAS/HSLU storage
Methodology

Objective Function:
Costs (LCOH)

Preprocessing

Postprocessing

Black Box Optimizer
NOMAD

New input parameters
Methodology

- Multi-year simulations to achieve a steady state of the storage system
- Different storage temperatures
- Building data (room heating demand, heat reference area, number of inhabitants)
- Location: Bern
- Domestic hot water requirement according to SIA 385/1
- Use of PV modules commercially available in Switzerland
- Consideration of the heat loss of the storage tank over the ground
- Consideration of the temperature change of the soil depending on the depth and season
The following 3 storage scenarios are investigated:

Scenario 1: Vacuum insulated storage
Scenario 2: FRP storage (spherical shape)
Scenario 3: GEAS Storage

Case 1: Empty cellar
Case 2: New construction in the ground
Storage Model Overview

Discretization of energy equations:

- Spatial:
 - Diffusion Term: «Central Differencing Scheme»
 - Convection Term: «Up-/Down Wind Scheme»
 - Source/Sink Term: «Linear»
- Temporal:
 - «Fully Implicit Method»

- Solution algorithm:
 - Direct
 - «Tri-diagonal Matrix Algorithm» (TDMA)

- Independent storage geometry
- Capsule geometries are calculated by spherical analogies
- Flexible, adaptable and expandable
Capsule conversion of any geometry into a spherical capsule equivalent

- Identical capsule surface
- Identical PCM volumes

Hybrid Thermal Energy Storage Model

Experimental setup
Hybrid Thermal Energy Storage Model
Validation

Charging

Energy Charged
11.67 kWh (Sim)
12.06 kWh (Exp.)

Discharging

Energie Discharged
14.17 kWh (Sim)
14.44 kWh (Exp.)
- NOMAD = **Nonlinear Optimization by Mesh Adaptive Direct Search**

- Open Source

- Input Argumente:
 - Restrictions
 - Design Variables
 - Categorical variables

 → Allows the choice between different PCMs at a certain storage height

 – Objective function (weighed sum, e.B. LCOH and solar coverage ratio)

 \[f(x) = \sum_{i=1}^{2} w_i f_i(x) \]

2Audet et al. (2009). NOMAD user guide
Outlook

• Finish building the entire simulation model
• Comprehensive validation of all sub models
• Start of the optimization campaign:
 – Perform simplified parameter study to identify most relevant optimization parameters
 – Determine value ranges and step size of the optimization parameters
 – Perform benchmark simulations and make necessary adjustments
 – Perform sensitivity analysis
• Evaluation of optimization data
• Ongoing exchange with energy4me and COWA regarding costs and technical feasibility
• Planned Innosuisse project input with energy4me
Thank you for your attention!