Task 55 Towards the Integration of Large SHC Systems into DHC Networks

Solar DH – network hydraulics and supply points

IEA SHC TECH SHEET 55.A.2.3, page 1 of 3

Subject:	Feasibility analysis of hybrid technologies for DHC including ST	
Description:	Feasibility analysis of solar based PTC-ORC combined cooling and power plant	
Date:	October 2020	
	Eduardo A. Pina, Luis M. Serra, Miguel A. Lozano, Adrián Hernández, Ana Lázaro	
Authors:	(Universidad de Zaragoza)	
Download possible at:	http://task55.iea-shc.org/fact-sheets	

Introduction

The present factsheet summarizes the study "Comparative Analysis and Design of Solar Based Parabolic Trough - ORC Cogeneration Plant for a Commercial Centre" performed by the Universidad de Zaragoza (Spain) and published in 2020 [1]. Two novel solar based PTC-ORC cogeneration systems, producing power and cooling, were pre-designed, considering commercially available pieces of equipment, to cover the annual energy demands of a commercial centre located in Zaragoza (Spain). Their annual behaviour was analysed from technical, economic, and environmental viewpoints, proving their technical feasibility. Although the proposed solar based cogeneration systems were not competitive with a conventional system in which all the required electricity was purchased from the grid, the obtained results were promising and revealed the systems' potential interest and competitiveness in the short to medium term. Furthermore, from an environmental viewpoint the studied PTC-ORC systems presented considerable benefits, contributing significantly to the decarbonisation of the energy production, and achieving a very high renewable fraction.

Figure 1. Simplified diagram of the combined cooling and power systems analysed in the study (Source: [1])

Task 55 Towards the Integration of Large SHC Systems into DHC Networks

Solar DH – network hydraulics and supply points

Analysis highlights

Figure 1 depicts a simplified diagram of the analysed solar-based cogeneration systems that must attend the annual electricity and cooling demands of the commercial centre located in Zaragoza (Spain). Cooling is required for air conditioning throughout the year, even during winter months, to maintain comfortable indoor temperature conditions. The annual thermal cooling demand amounts to 6412 MWh_t. The annual electrical demand required for lighting, services, etc. (excluding the electricity consumption for cooling production in the mechanical chillers) amounts to 1370 MWh_e.

The proposed cogeneration systems consist of solar parabolic trough collectors integrated with thermal energy storage, an Organic Rankine Cycle, and vapor compression refrigeration chillers. A systematic procedure was applied to obtain the preliminary sizing of the plant components (see Table 1) considering commercially available pieces of equipment. System A is hybridized with a biomass boiler that supports the solar thermal production and allows full load operation of the ORC during all the solar system's operating time. System B, on the other hand, is not hybridised with biomass. For this reason, the installed capacities of the solar system and ORC are larger and it is considered that the ORC can operate at partial load, in order to produce the electrical requirements of the commercial centre (electricity for cooling production and electricity demand). Both systems were connected to the electrical grid, regarded as an auxiliary system, thereby selling the surplus electricity, and purchasing the required electricity when needed.

A detailed physical simulation of the operation of the system throughout the day and the year was performed, capturing its hourly, daily, and monthly dynamic behaviour, considering: (i) the variations of ambient temperature, solar radiation, and thermal energy production, among others; and (ii) the modelling of the different pieces of equipment based on technical data and investment costs of commercially available devices. Simplified economic and environmental analyses were also performed. The configuration without biomass hybridization (system B) was more economically interesting than the one with biomass boiler (system A), producing electricity at $0.1458 \notin /kWh$, which is only 7% more expensive than the electricity purchase price in Spain. This was mainly due to the elimination of the purchase of biomass pellets, at the expense of the operational reliability provided by a dispatchable renewable energy source (i.e. biomass) and of a simpler operating strategy due to the partial load operation of the ORC in system B. Very high renewable fractions of almost 70% in system A and about 75% in system B were reached, obtaining a reduction of 85% of CO₂eq emissions in system A and carbon neutrality in the case of system B.

Future research effort is required in order to develop optimized cogeneration and trigeneration systems mainly driven by renewable energies in terms of: i) sizing, ii) more appropriate energy integration schemes

Task 55 Towards the Integration of Large SHC Systems into DHC Networks

Solar DH – network hydraulics and supply points

considering the possibility of covering all energy services of a buildings (heating, cooling and electricity), implementing absorption chillers as well as thermal energy storage of heating and cooling produced, and iii) reducing the investment cost of these systems.

Components		System A	System B
	Total aperture reflective area	13,080 m ²	19,620 m ²
	Land area	32,375 m ²	52,610 m ²
	Field thermal output power	9.20 MWt	13.79 MWt
	Solar thermal energy produced	10,358 MWh/yr	17,930 MWh/yr
	<u>Solar Collector</u>		
	Model	Siemens SunField 6	Siemens SunField 6
	Orientation	North - South	North - South
Solar	Tilt	0°	0°
system	<u>Solar receiver</u>		
	Model	Siemens UVAC 2010	Siemens UVAC 2010
	Heat Transfer Fluid	Therminol 66	Therminol 66
	Tsf,out-Tsf,in of receiver HTF	214-121 °C	214-121 °C
	<u>Thermal energy storage (TES)</u>		
	Thermal energy capacity	16.7 MWh	32.6 MWh
	Tank volume	356 m ³	696 m ³
	Hours of storage	6 hours	6 hours
Biomass boiler	Thermal power	2.8 MW _t	-
	Energy efficiency (LHV basis)	0.82	-
	Biomass LHV	15.5 MJ/kg	-
	Model	Cobalt W 153.3	Cobalt W 153.3
	Number of chillers	3	3
Mechanical chillers	Refrigerant	R134a	R134a
	Nominal cooling capacity per chiller	1527 kW t	1527 kW t
	Nominal electrical input power	326 kW _e	326 kW _e
	EER (nominal)	4.68	4.68
	Water temperature at condenser (in – out)	30-35 °C	30-35 °C
	Water temperature at evaporator (in – out)	12-7 °C	12-7 °C
Organic Rankine Cycle (ORC)		Single pressure with	Single pressure with
	Туре	regenerative	regenerative
		preheating	preheating
	Number of ORCs	1	1
	Electric efficiency (full load)	0.18	0.18
	Nominal electrical power	500 kWe	978 kWe
	Thermal input power	2.78 MWt	5.43 MWt

Table 1. Solar based cogeneration systems. Technical data of components (Source: [1])

Reference

 [1] E. A. Pina, L. M. Serra, M. A. Lozano, Adrián Hernández and Ana Lázaro, "Comparative Analysis and Design of Solar Based Parabolic Trough - ORC Cogeneration Plant for a Commercial Centre". *Energies* 2020; 13, 4807; doi:10.3390/en13184807