

OHC - Collector

Description:	OHC – Collector: Collector Overheating Protection with Backcooler
Date:	May 2015
Authors:	<u>Alexander Thür</u> , Claudia Hintringer, Norbert Hauer, Wolfgang Streicher (University of Innsbruck), Robert Hausner, Alexander Kaiser (AEE INTEC), Roland Riepl (Greiner Technologies), Gernot Wallner (JKU-IPMT)
Download at:	http://task39.iea-shc.org/publications

Introduction

Within the Austrian project SolPol-2 (<u>www.solpol.at</u>) the concept of a flat plate collector, which can be completely produced with cheap plastic (max. temperature 90°C) with integrated overheating protection was investigated and functional models were developed, constructed and tested. The principle concept is shown in the Figure 1:

Figure 1: Principle of overheat protection via thermosyphonal backcooling.

In case of risk of overheating a special valve opens the connection from the absorber to the backcooler, and due to the solar irradiation on the absorber and the cooling effect at the backside at the backcooler a thermosyphon driven cooling flow occurs.

Test Results

In several steps functional model collectors were developed, constructed and tested. For the absorber black-pigmented polypropylene grades were used. In Figure 2 left selected model collectors (small and large) are depicted. Performance tests and stagnation tests were performed at different test facilities. In Figure 2 right the efficiency curve of a model collector is presented.

In Figure 3 a stagnation test shows the potential of the cooling effect. Without backcooling (until 12:30) the absorber temperature increases up to 115°C and still did not reach the maximum. After activating the backcooling system the absorber temperature dropped to about 85°C at about 950W/m² solar irradiation and about 20°C ambient temperature.

OHC - Collector

INFO Sheet B5

Figure 2: Left - functional model collectors at the outdoor test facility; Right - measured efficiency curve of the large collector.

Figure 3: Stagnation test showing the potential of temperature limitation at the absorber.

References

Thür, A., Hintringer, C., Richtfeld, A., Streicher, W., Kaiser, A., Hausner, R., Fink, C., Koller, W., Riepl, R., (2013), *Status Quo der Entwicklung eines überhitzungsgeschützten Kunststoffkollektors*, erneuerbare energie ee1-13, Gleisdorf.

Hintringer, C., Richtfeld, A., Hauer, N., (2014), *Ein Beitrag zur Simulation und Messung eines Kunststoffkollektors mit integriertem Überhitzungsschutz*, 24. Symposium Thermische Solarenergie, Staffelstein, Deutschland

Thür, A., Neyer, J., Streicher, W. (2014), Validierung und Anwendung eines Kollektorrechenmodells zur Entwicklung eines Kunststoffkollektors mit eigensicherer Temperaturbegrenzung, 24. Symposium Thermische Solarenergie, Staffelstein, Germany