

Making a difference to your environment

Corey C. Blackman

Development

Generation 0a – Single Collector (Fraunhofer ISE, Freiburg, 2012)

Generation 0b – 5.6 m² Collectors (Stockholm, 2013)

Development

Generation 1 – 180 m² Collectors – 40kW [360 kWh/day] (Karlstad, 2014) Further info in Activity A2

Development

Generation 2 (European Project A2PBEER) – 55m² Collectors 12 kW_{cooling} [118 kWh_{cooling}/day] (Ankara, Turkey, Oct 2016)

Manufacturing in China

Zhong Fa Zhan Holdings Limited

The project seeks to optimise various possible configurations of a decentralised/distributed thermally driven heat pump as a complement to, or replacement of, district heating for space and/or water heating and/or cooling.

The following research questions have been answered thus far:

- ✓ What are the primary performance indicators for a sorption integrated solar heating and cooling system?
- ✓ What are the typical values of the performance indicators for a sorption integrated solar heating and cooling system?
- ✓ What are the potential energy and monetary savings of the system?

Generation 3 (PhD Studies)

Objective:

- Increased Robustness of Sorption Module (optimised sorption module technology)
- Lower Cost (performance effect of cost reduction procedures)

Remaining Research:

- Development and validation of generic model of sorption module for coupling to various applications (solar cooling, energy storage, gas driven heat pumps, etc.)
- Simulation of sorption module for solar heating and cooling applications in multifamily buildings and/or hotels
- Benchmarking comparison to other technologies: performance and cost

Techno-economic System Comparison

A case study of various heating and cooling system scenarios will we used to compare systems on the basis of performance and cost.

<u>Scenario</u>	<u>Solar</u>	Heating System	<u>DHW</u>	Cooling System
1	SunCool	SunCool + Boiler	SunCool + Boiler	SunCool + Electric Chiller
2	PV	Reversible HP	Electric Resistance	Reversible HP
3	PV	Reversible HP	Reversible HP	Reversible HP
4	Solar Thermal + PV	PV + Reversible HP	Solar Thermal + Electric Resistance	Reversible HP

