PUSCH Australia

Solar Heating and Cooling in Australia –
An industry roadmap for the built environment

Update
Net Household Expenditure and Use

Source: ABS (2016)

a – Electricity
b – Gas
Total Energy Consumption
Commercial Buildings

Source - pitt&sherry
Fuel Mix
Commercial Buildings

Source - pitt&sherry
Electricity End Use Shares Commercial Buildings

Average all periods, n=1150

- HVAC: 43%
- Lighting: 26%
- Total Equipment: 20%
- Domestic hot water: 10%
- Other electrical process: 2%

Source - pitt&sherry
PV installations
Cumulative Residential Solar Water Heater Installations
Commercial Solar Hot Water STC projection
What drives heating/cooling demand growth?

Projected Population Australian Capital Cities 2012 - 2061

Source: ABS (2013)
What drives heating/cooling demand growth?

- Economy continues growth path
- Residential Building Energy consumption growth from 441.1 PJ (2017) to 467 PJ (2020)
- Commercial Building consumption growth from 159.4 PJ (2017) to 169.6 PJ (2020)
- But: Electricity and Gas prices will continue to rise
Federal Regulatory and Support measures

• Renewable Energy Target (RET) with small-scale technology certificates (STC) for sale to electricity retailers
• Clean Energy Finance Corporation (CEFC)
• National Construction Code (NCC) Volume 1, Section J
• National Australian Built Environment Rating System (NABERS)
• Building Energy Efficiency Disclosure (BEED) Act with Commercial Building Disclosure (CBD), requiring Building Energy Efficiency Certificate (BEEC)
• Energy Efficiency in Government Operations (EEGO) with Green Leases
Other national programs

- AS5389 – estimate energy consumption of solar heating and cooling systems for receiving government support such as STCs
- Green Building Council (GBCA) – Green Star Rating
State Regulatory and Support Measures

- Environmental Upgrade Agreements (EUAs) – Victoria, NSW
- Energy Savings Scheme – NSW
- Victorian Energy Upgrade
- ACTSmart Business Energy and Water Program
- Energy Savers
- South Australian Energy Productivity Program
- Energy utility peak demand reduction projects, demand management projects and renewable energy buyback schemes
Market Barriers

• Very high initial cost
 • No local production of
 • Limited experience – high quotes to mitigate perceived risk
 • Bureaucratic hurdles for support programs

• Lack of awareness of benefits / unrealistic expectations
 • Strong interest but little knowledge
 • Quick payback expected
 • 100% solution expected

• Split Incentives
Market Barriers

• Inexperienced / untrained consultants and trade
 • SHC systems not covered in standard training and university curriculum
 • Consultant fee models only support standard systems design
 • Consultants inflate fees to cover risks

• Technical and financial risks
 • Project owners perceive risks
 • Negative perception from underperforming demonstration systems
 • Australian market interesting for international players but often targeted with limited focus/funds

• Alternative Technologies
 • PV and high efficiency heat pumps
Opportunities

<table>
<thead>
<tr>
<th>Application</th>
<th>Residential</th>
<th>School</th>
<th>Universities & VET</th>
<th>Office</th>
<th>Public buildings</th>
<th>Hotel</th>
<th>Restaurant</th>
<th>Supermarket</th>
<th>Retail strip</th>
<th>Shopping centre excl. supermarket</th>
<th>Hospital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical operating hours</td>
<td>8am-12pm</td>
<td>8am-1pm</td>
<td>8am-9pm</td>
<td>8am-9pm</td>
<td>9am-5pm</td>
<td>9am-5pm</td>
<td>24 hours</td>
<td>12 hours</td>
<td>7am-10pm</td>
<td>8.30am-6pm</td>
<td>8.30am-6pm</td>
</tr>
<tr>
<td>Operating days</td>
<td>50-100</td>
<td>200</td>
<td>240</td>
<td>240</td>
<td>365</td>
<td>310-380</td>
<td>360</td>
<td>330</td>
<td>360</td>
<td>365</td>
<td></td>
</tr>
</tbody>
</table>

CURRENT balance	Low	High	Medium	Low	Low	Low	Medium	Medium	Medium	Low	Low	Low	Low	High
Indicative capacity range	2 to 15kW	15 to 50kW	50 to 500kW	50 to 500kW	500kW to 2MW	10 to 500kW	10 to 500kW	100kW to 2MW	100kW to 2MW	100kW to 2MW				
Relative hot water use	High	Low	Low	Low	Low	High	High	Medium	Low	Low	Low	Low	High	
Fresh air requirement	Low	High	High	Low	Medium	Low	High	Low	Low	Low	Low	Low	High	

Latent load	Average	Above average	Average	Average	Average	Above average	Average	Average	Average	Above average		
HVAC energy use (kWh/ha)	102	18	3.5	27.6	1.1	3.3	NA	NA	NA	NA	NA	9.9
HVAC energy intensity (MJ/m²/yr)	115	<18	160-440	380	300-550	680	NA	NA	NA	NA	NA	680
Current stock size (number / 100m²)	8,402 / 1,004,000	9,141 / 1,004,000	4,585 / 16,721	NA / 47,498	3010	4,403 / 11,787	NA / 13,787	1,891 / NA	346,704 / 22,599	1,352 / 13,994		
Incumbent technology	AC Split	AC Split	AC Ducted / Package, Central plant	AC Ducted / Package, Central plant	AC Ducted / Package, Central plant	AC Split, Ducted / Package	AC Split, Ducted / Package	AC Ducted / Package, Central plant				
Complexity of incumbent technology	Low	Low	Medium	Medium	Medium	Low to Medium	Medium	Low	Medium to High	High		

[coolgaia logo]
Australian climate zones (AS5389)
Niche Fit

<table>
<thead>
<tr>
<th>Climate Zone</th>
<th>Residential</th>
<th>School</th>
<th>University</th>
<th>Office</th>
<th>Public Buildings</th>
<th>Hotel</th>
<th>Restaurant</th>
<th>Retail</th>
<th>Hospital</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC1</td>
<td>⭐⭐⭐ / ⭐⭐⭐</td>
<td>⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
</tr>
<tr>
<td>Cost</td>
<td>⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
</tr>
<tr>
<td>SC2</td>
<td>⭐⭐⭐ / ⭐⭐⭐</td>
<td>⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
</tr>
<tr>
<td>Cost</td>
<td>⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
</tr>
<tr>
<td>SC3</td>
<td>⭐⭐⭐ / ⭐⭐⭐</td>
<td>⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
</tr>
<tr>
<td>Cost</td>
<td>⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
</tr>
<tr>
<td>SC4</td>
<td>⭐⭐⭐ / ⭐⭐⭐</td>
<td>⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
</tr>
<tr>
<td>Cost</td>
<td>⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
</tr>
<tr>
<td>SC5</td>
<td>⭐⭐⭐ / ⭐⭐⭐</td>
<td>⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
</tr>
<tr>
<td>Cost</td>
<td>⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
</tr>
<tr>
<td>SC6</td>
<td>⭐⭐⭐ / ⭐⭐⭐</td>
<td>⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
</tr>
<tr>
<td>Cost</td>
<td>⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
</tr>
</tbody>
</table>

1. Not a good diurnal load match; for worthwhile deployments, requires daytime usage.
2. Dependent on fresh air requirements and latent load
3. For smaller deployments
4. For parts of climate zone as per requirements
Recommendations

<table>
<thead>
<tr>
<th>Regulate</th>
<th>Support</th>
<th>Inform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardisation / Best Practice design – extend AS5389</td>
<td>Environment Upgrade Agreements (EUA)</td>
<td>Training/Knowledge dissemination</td>
</tr>
<tr>
<td></td>
<td>On-Bill Finance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energy Performance Contracts (EPCs) / Energy Services Companies (ESCOs)</td>
<td>Pilot projects</td>
</tr>
</tbody>
</table>
Dark horse?
Thank you!