

IEA SHC Task 53

Solar cooling: worldwide overview and challenges

Daniel Mugnier, Dr. Ing, TECSOL & IEA SHC Task 53 Operating Agent Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

The Future of Cooling - Implications and opportunitie energy efficiency (IEA) Reference scenario

- On current trends, energy needs for space cooling almost entirely in the form of electricity – will more than triple between 2016 and 2050, driven mainly by the residential sector (2 000 TWh => 6 000 TWh)
- Most of the projected growth in energy use for cooling is set to come from India, China and other emerging economies.
- Space cooling is set to overtake appliances and plug loads to become the single largest user of electricity in buildings (2015:10%; 2050:30%) and the second largest electrical end use after industrial motors.
- The share of cooling in electricity demand increases everywhere bar China and most notably in India and Brazil, where the potential for increased use of air conditioners is greatest.

The Future of Cooling Implications and opportunities energy efficiency

Efficient cooling scenario

Task 53 👯

 Energy needs for air conditioning almost double over 2016-2050 in the Efficient Cooling Scenario but the increase is - 18 How to deal with this MAJOR challenge ! less than half that of the Reference Scenario.

Vision for solar cooling – ROADMAP until 2050

Task 53 🐇

Solar cooling market trends in the World

Still a niche market : ≈ 1,350 systems installed worldwide (2015)

A High level of innovation

- still present :

IEA SHC Task 53

- * kWh cooling cost de **http://task53.iea-shc.org/**

Already very accurate concepts for Arabic countries

- * low & medium temperature solar thermal absorption
- * small size PV air-conditioning

Source: Solem Consulting / TECSOL

Need of a new Generation solar cooling systems

Solar thermal « traditionnal » cooling has **difficulty to emerge as a economically competitive solution**

Main reasons :

- Technical : Limit on adaptability due to hydraulics, complexity
- **Economical** : High upfront cost, especially for small systems
- ⇒ Still need **intensive R&D** for quality improvment and best solution selection (ongoing IEA SHC Task 53)

 \Rightarrow Very innovative concepts such...

Main categories of PV cooling systems

Solar air conditioners : Splits

PV+ HP coupling for Office/Commercial

PV COOLING CONCEPT

PV + INVERTER + R290 « clean » chiller

Ready for the market via demos...

ATI575 Concept

Task 53 👯

Conclusions

<u>Solar cooling</u> **highly needs innovations** : cost reduction, 30 years reliability and performance..

High stimulation from PV to solar thermal for small to medium cooling power range

High priority targets in term of markets :

- MENA region
- China
- Sun Belt

Very promising segments for solar thermal cooling with large system concepts

Main driving future for solar cooling...

Accelerating the Clean Energy Revolution

Linked with Mission Innovation Challenge #7 Affordable Heating & Cooling for Building Innovation

Statement : Cooling is one of the major energy need increase worldwide and except solar, no renewables are really competing

The future market is essentially in the Sunbelt : MENA, India, Asia, Africa, America, Oceania

IEA SHC Countries own a real knowhow on solar cooling but the "mistake" was to imagine to develop solutions for IEA SHC countries

A "technology-transfer" collaborative Work/Task is more than ever needed

Thanks for your attention !

Contact : Daniel Mugnier

daniel.mugnier@tecsol.fr

Task 53 👯