Design and optimization of CCHP for microgrids and solar energy buildings

Dr. Arun Kumar Vaiyapuri
Project Manager- R&D and Renewable Energy
STEAG – Shareholder Structure

<table>
<thead>
<tr>
<th>Name</th>
<th>Shareholding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stadtwerke Duisburg</td>
<td>19%</td>
</tr>
<tr>
<td>Stadtwerke Essen</td>
<td>15%</td>
</tr>
<tr>
<td>Stadtwerke Dinslaken</td>
<td>6%</td>
</tr>
<tr>
<td>Dortmund Stadtwerke</td>
<td>36%</td>
</tr>
<tr>
<td>Stadtwerke Bochum</td>
<td>18%</td>
</tr>
<tr>
<td>Energieversorgung Oberhausen</td>
<td>6%</td>
</tr>
</tbody>
</table>

STEAG Energy Services
STEAG Portfolio overview

Existing business activities

Energy Technologies
- Design, planning and operation of power plants

Nuclear Technologies
- Planning, construction and dismantling of nuclear facilities

Plant Services
- Operation and maintenance services for thermal power stations, especially gas fired ones

System Technologies
- Development, sale and implementation of O&M management and energy management tools

Strategic projects

“Asset Light” projects
- Minority investments in combination with international O&M contracts

International wind and solar projects
- Identification and evaluation
STEAG International Presence

SUBSIDIARIES

STEAG Energy Services GmbH
Essen, Germany
Established in 1937

STEAG Energy Services Schweiz GmbH
Zurich, Switzerland
Established in 2014

STEAG Energy Services Solar S.L.U.
Seville, Spain
Established in 2012

STEAG SCR-Tech, Inc. (JV 50%)
Kings Mountain (North Carolina), USA
Established in 2016

STEAG Energy Services do Brasil Ltd.
Rio de Janeiro, Brazil
Established in 2002

STEAG EOH Energy Services (Pty) Ltd. (JV 50%)
Johannesburg, South Africa
Established in 2016

STEAG Energy Services Botswana (Pty) Ltd.
Gaborone, Botswana
Established in 2014

STEAG Ensida Energy Services Ltd.
Ankara, Turkey
Established in 1996

STEAG Energy Services (India) Pvt. Ltd.
Noida, India
Established in 2001
STEAG’s proven track record for future success

1937 Foundation of STEAG

1996
- Leuna (Germany)
 - 162 MW Refinery
1998
- 165 MW Hard coal
2000
- Termopaipa (Colombia)
- 1,320 MW Hard coal
2002
- Illmenau (Germany)
 - 5 MW Biomass (1)
2004
- Iskenderum (Turkey)
2006
- Mindanao (Philippines)
 - 232 MW Hard coal
2009
- Karstädt (Germany)
 - 1 MW Biogas (1)
2010
- Kohlscheid (Germany)
- Walsum 10 (Germany)
2012
- Leuna (Germany)
- 1,320 MW Hard coal
2013
- Ridham Dock (UK)
 - 25 MW Biomass

About 8,000 MW commissioned in the Rhine-Ruhr and Saar regions
STEAG holds a strong position in the renewable energy market

- **Sites of Steag New Energies GmbH**
- **Subsidiaries**

STEAG Projects

Wind
- 306 MW total in Germany, Romania, France (Operating >500 turbines)

Solar
- 30 MW Solar PV O&M at Telangana
- 300 kWp Rooftop at Holy Family Hospital microgrid.
- 20 Kwp Rooftop at St. Mary School at Rothak microgrid.

Biomass
- since 2002
- #3 in Germany

Biogas
- since 2007
- First own biogas plant commissioned

Mine gas
- since 1908
- #1 in Germany

Geothermal
- since 1994
- #1 in Germany

Contracting
- since 1961
- #2 in Germany

Total
- Sites of Steag New Energies GmbH
- Subsidiaries

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>Installed capacity</th>
<th>Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass*</td>
<td>MW<sub>el</sub> 66</td>
<td>MW<sub>th</sub> 154</td>
</tr>
<tr>
<td>Biogas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mine gas</td>
<td>MW<sub>el</sub> 177</td>
<td>MW<sub>th</sub> 139</td>
</tr>
<tr>
<td>Geothermal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contracting</td>
<td>MW<sub>el</sub> 77</td>
<td>MW<sub>th</sub> 905</td>
</tr>
<tr>
<td>Total</td>
<td>MW<sub>el</sub> 319</td>
<td>MW<sub>th</sub> 1,271</td>
</tr>
</tbody>
</table>
Typical Microgrid

- Diesel Generator
- Solar PV
- Load
- Biomass
- Grid

SHC TASK 86
Solar Energy Buildings

Mittwoch, 28. September 2022
Dr. Arun Kumar Vaiyapuri
Approach

Identification of Project/Case study

Data Collection (Load, Generation, environmental parameters etc.)

Identification and possibility of accurate measurements

Optimization and effective utilization of Renewable Energy (solar energy)
Figure: System model of the proposed rural off-grid system
Different BESS options for microgrid

- Flooded LA
- VRLA (Tubular Gel)
- Li-ion
Key Parameters/Data

Combination of primary and secondary Data

Primary Data
- Solar Irradiation
- RE Resources
- Electric Load
 - Heating
 - Cooling
- Thermal Load
- Heating
- Cooling
- Site constraints
- Uncertainty
- Economic constraints
- Reliability

Secondary Data
- Assessment methodology
- Data analysis
- Accuracy of data and measurements
- Duration of Data
Data Collection

• Load Pattern
 1. Electric Load Pattern
 • Typical loads
 • Variation pattern
 • Impact on load – Seasonal

 2. Thermal Load Pattern (Combined Cooling and Heating (CCHP))
 • Cooling load
 • Heating load including hot water load

• Climatic Conditions
 • Temperature
 • Humidity

• Solar Radiation Data
 • GHI
 • DNI (Wherever heat is considered)
Optimal Sizing

Microgrid Planning

- Inputs: Solar data, biofuel data, load data, Cost parameters
- MILP based optimal sizing formulation
- MILP optimization process using GLPK solver
- Outputs: Optimal size of PV, Bio, BESS and DG-set

Energy Balance

- Asset Configuration (Solar, Biomass, BESS, DG-set)
- Hourly Dispatch Analysis
- Hourly dispatch Schedule
- Hourly generation data and load data, SOC seasonal variation

Economic Analysis

- Input: Cost data
- Economic Analysis and Co2 Analysis
- Output: LCOE, NPV and Carbon saved
Table: Case Study details

<table>
<thead>
<tr>
<th>Case study</th>
<th>Description</th>
<th>Location</th>
<th>Grid availability</th>
<th>Alternate Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1.</td>
<td>Holy Family Hospital (HFH)</td>
<td>Delhi</td>
<td>Good</td>
<td>DG-set</td>
</tr>
<tr>
<td>Case 2.</td>
<td>St. Mary school (SMS)</td>
<td>Rohtak</td>
<td>Very Poor</td>
<td>DG-set</td>
</tr>
<tr>
<td>Case 3.</td>
<td>St. Mary Hostel (SMH)</td>
<td>Rohtak</td>
<td>Very Poor</td>
<td>DG-set</td>
</tr>
<tr>
<td>Case 4.</td>
<td>Green Urja (GU)</td>
<td>Gorakhpur</td>
<td>Poor</td>
<td>DG-set</td>
</tr>
<tr>
<td>Case 5.</td>
<td>Rajagiri college of social science (RCSS)</td>
<td>Cochin</td>
<td>Good</td>
<td>DG-set</td>
</tr>
</tbody>
</table>
Case Study-RCSS

DG1-320 kVA

DG2-500 kVA

GRID SOURCE-1

GRID SOURCE-2

DG3-500 kVA

OTHER LOADS

CARMEL BLOCK

RCSS OLD BLOCK

AC

Power in kW

Hour of day

SWD
SWE
SMWHD
SMWWE
Case study-RCSS

CASE STUDY

Mittwoch, 28. September 2022 Dr. Arun Kumar Vaiyapuri
Case Study - SMS and SMH

LEGEND:

- MCB (MINIATURE CIRCUIT BREAKER)
- MCCB (MOULDED CASE CIRCUIT BREAKER)
- CT (CURRENT TRANSFORMER)
- CHANGE OVER SWITCH
- ENERGY METER
- CHANGE OVER
Case Study-SMS and SMH

Figure: Load Pattern of School

Figure: Load Pattern of Hostel
Brief Contents

Introduction

CCHP for Micro-Grids and Solar Energy Buildings

Key Parameters/Inputs

Optimization of CCHP

Case Studies of CCHP

Conclusion
Conclusion

- **Summary of key steps for a successful implementation of CCHP in Microgrids or individual entities**

 - Accurate Data collection with more long term data
 - Design and optimization of complete system with system constraint
 - Techno-Economic optimization with financial constraints
 - Effective implementation with latest technology
 - Industrial best practice O&M implementation

- **Advanced level scope**
 - Budget constraint optimization
 - Generation and load expansion planning
 - Effective storage
 - Community level participation in energy transfer and optimum management system
For more information feel free to contact us:

Dr. Arun Kumar Vaiyapuri (Project Manager - R&D and Renewable Energy)

akv@steag.in

Thank You