

SHC Task 65

Task Status Report92nd ExCo Meeting, Cape Town

Uli Jakob, JER / Green Chiller, Germany Task Duration: 1 July 2020 – 30 June 2024

Technology Collaboration Programme

Since Last ExCo Meeting

- Fifth Expert Meeting, Sept. 29th, 2022 in Kassel, Germany
- 21 experts from 11 countries
- Joint Subtask/activity online meeting held in November as well
- Work is progressing with minor changes of the time planning (some Deliverables are delayed)

Geographic areas between 40°N and 40°S latitude

- Solar direct normal irradiance
- Population density/Built-up areas/ Settlement levels (SMOD)
- Climate zones (Köppen–Geiger) climate classification system)
- SunBeltChiller project **Relevance and market** potential estimation (draft)

(DNI > 1,500 kWh/m²a, SMOD 13...30, potentially suitable climate zones)

Subtask A: Adaptation

climatic conditions and typical applications data such as

Progress & results since last ExCo meeting

Lead: Salvatore Vasta, CNR-ITAE, Italy

Activity A1: Climatic conditions & applications

SunBeltChiller – The Project

- **Partners:** ZAE Bayern (R&D), Industrial Solar GmbH (commercialization)
- Funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK)
- Project duration: 2020 2025
- 1. Developing technical design tool
- 2. Study about SunBeltChiller for the sunbelt region:

Where it can be used with what advantages ?

- 3. Building Demo-SunBeltChiller with a cooling capacity of \approx 50 kW
- 4. Testing the Demo-SunBeltChiller at the ZAE Bayern in Garching
- 5. Demo-SunBeltChiller in a real solar thermal plant in the sunbelt region

SunBeltChiller – How it works

Source: ZAE Bayern

Day / Ambient temperature > 30° C:

- DL mode driven by heat from solar collector
- DL heat storage @ ≈ 90° C
- COP_{DL} ≈ 0.35
- Cooling demand supplied by DL and storage

Night / Ambient temperature < 30° C:

- SE mode driven by heat from storage
- SE recooling by dry air cooler
- Cooling demand supplied by SE
- Charging cold storage by SE
- COP_{SE} ≈ 0.75

Day + Night :

- Solar thermal cooling with dry air cooler
- COP_{DL/SE} ≈ 1.35
- + covering heat demand @ ≈ 90° C

Use of a GIS to determine boundary conditions

Method (using Geographic Information System Software QGIS):

- 1. Collecting solar cooling specific geographic data from different sources
 - Climate zones (Köppen–Geiger climate classification system)
 - Various solar irradiances (DNI, GHI, DIF) and photovoltaic power potential (PVOUT)
 - Population density/Settlement levels
 - Industrial area
 - Water availability
 - Market risk (RRI) covered by Environmental Social Governance (ESG)
 - Purchasing Power Parity / Gross Domestic Product (GDP)
- 2. Adaptation of the data to a uniform grid structure

Source: ZAE Bayern

Use of a GIS to determine boundary conditions

Method.

- 3. Defining data filter
- 4. Combining data based on data filter
- 5. Using population density and industrial area to identify potential cooling demand
- 6. Using Gross Domestic Product (GDP) to identify market potentials
- 7. Numerical und graphical presentation of the results

The method can be used to analyze general boundary conditions for cooling systems and to analyze cooling system specific potentials by choosing/defining appropriate filter

Data source	Filtered range	
Köppen-Geiger climate classes	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
Direct Normal Irradiance [kWh/m ² /year]	0 1000 1500 2000 2500 3000	
(Global Horizontal Irradiation (GHI), Photovoltaic power potential (PVOUT))		Filter
Industrial area per building [m ²]	0	
Baseline Water Stress	-101234	
Reputational Risk Index	012345	
Gross Domestic Product		
(Map representation)	Results	
Industrial area over Gross Domestic Product		
(Statistics representation)		

Tropical, savannah

Arid, desert, hot Arid, desert, cold

Arid, steppe, hot

Total population

e, dry summer, hot summer erate, dry summer, warm summe

Temperate, dry winter, hot summer

Temperate, dry winter, warm summe

Temperate, no dry season, hot summe

Source: ZAE Bayern

Results of the system specific potential analysis for the SunBeltChiller

Source: ZAE Bayern

INTERNATIONAL ENERGY AGENCY

Subtask B: Demonstration Lead: Wolfgang Weiss, ergSol, USA

Progress & results since last ExCo meeting

B1/A2 Show cases on system and component level & Adapted components:

32 projects across 18 countries with 17.1 MW of cooling are studied.

- Most of the projects reported are from BWh (Hot desert) (23%), and BSh (Hot semiarid) & Csa (Hot summer-Mediterranean) (both 20%) climate regions.
- **30%** of cases studied **use evacuated tube**, flat plate (17%), Fresnel (17%), parabolic trough collectors (10%) and **PV panels (10%)**.
- Of the available ST cooling technologies, 71% of them use absorption chillers whereas 19% use adsorption chillers and other technologies such as ejector cooling, PV assisted cooling (3% each).

10

NUMBER OF THE OWNER OWNER

EA-SHC Task 65 Subtask B1- A2 "Show cases on system and component level" +

11

Progress & results since last ExCo meeting

- **B2 Design Guidelines:**
- Collection of design and system integration guidelines for the specific boundary conditions on solar cooling projects was performed. The key focus was put on:
 - Hybrid cooling system (Solar Thermal + HP + PV/PVT + Boiler, etc.)
 - Systems with high solar fractions
 - Standard modular packages for solar cooling solutions
- The scope was expanded to include not only case studies, but also innovations in the simulation/preliminary design stage and additional cases of identified solar cooling projects outside the Task

Outreach and Response

- FAHRENHEIT: SUNHORIZON
- <u>Solarinvert</u>: Catania, Italy 2.5 kW
- Solarwall : Chiloeches, Spain
- Sole: Athens, Greece
- FRIENDSHIP:
- ASTEP:
- SHIP2FAIR: Winery ,Spain

www.iea-shc.org

- Pink:
- SolCoolDry: Food Production, Kenya

 \checkmark

SHC

Activity B2:

Design Guidelines

Subtask B: Demonstration Lead: Wolfgang Weiss, ergSol, USA

Progress & results since last ExCo meeting

B4 Standardisation / Solar cooling kits:

- Collection of standardization and solar cooling kits in all capacity ranges and different technologies. Research has been started on the following topics of KPIs.
 - Background on renewable energy standards
 - · Specific standards for solar cooling
 - Technologies covered by Australian Standards include solar desiccant cooling systems, solar air space heating systems, solar water space heating systems, building ventilation systems, evaporative cooling systems.
- Pre-standard (CWA) "Experimental characterization of the hybrid heat pump module", publication expected end of 2022 (HyCool EU H2020 project)

CEN WORKSHOP AGREEMENT (CWA) Characterization of a hybrid heat pump module

Kick-off Meeting 2022/04/29

Subtask C: Assessment and tools Lead: Daniel Neyer, Neyer Brainworks, Austria

Progress & results since last ExCo meeting

C3/B3 Assessment mechanism / Key Performance Indicators:

- Review of existing tools and methods for technical (SPF, PER, fsav, etc.) and economic (LCC/CAPEX/OPEX, LCOH/LCOE, LCCBA etc.) hast started to provide the bases to select the necessary KPIs for different project phases and stakeholders.
- Adaptation of method and KPIs was collected in various expert meetings, workshops and bilateral meetings/interviews. The structure and first findings will be presented in a draft milestone report in December 2022.
- Activity C3 will be merged with Activity B3.

Subtask D: Dissemination

Lead: Paul Kohlenbach, Berlin Hochschule für Technik, DE

Progress & results since last ExCo meeting

D2 policy advise & financing models & D5 workshops:

- COOLING-DOWN EU LIFE project: roadmap to unlock the potential of renewable cooling for a decarbonised cooling sector
- Collecting and compiling information on business models and benefits of solar cooling applications has started. The next step will be the development of new financing schemes suitable for solar cooling considering the LCOE/LCC results of Subtask C.
- ISES SHC Solar Academy Webinar Task 65, (online) with 155 part. (25.10.2022) and 42 part. (27.10.2022)

INTERNATIONAL ENERGY AGENC

Subtask D: Dissemination

Lead: Paul Kohlenbach, Berlin Hochschule für Technik, DE

https://en.wikipedia.org/wiki/Solar_air_conditioning

Solar air conditioning

From Wikipedia, the free encyclopedia (Redirected from Solar cooling)

Solar air conditioning refers to any air conditioning (cooling) system that uses solar power.

This can be done through passive solar, solar thermal energy conversion and photovoltaic conversion (sunlight to elec 2012 funding for a new solar air conditioning research and development program, which should develop and demonst

Contents [hide]

- 1 History
- 2 Photovoltaic (PV) solar cooling
- 3 Geothermal cooling
- 4 Solar open-loop air conditioning using desiccants
- 5 Passive solar cooling
- 6 Solar closed-loop absorption cooling
- 7 Solar cooling systems utilizing concentrating collectors
- 8 Zero-energy buildings
- 9 See also
- 10 Notes
- 11 References
- 12 External links

prinent program, which should develop and demonst	
Missing information:	
2. Any reference in the second	
S. Issue for	
or operation in Sum 65	
NOUNBELT Part	
integions integions	

Participating Countries / Sponsors

Country / Sponsors	National Participation Letter (Y/N)	Number of Research Institutes	Number of Universities	Number of Companies
Australia	Y	1		
Austria	Y		2	7
China	Y		4	
Denmark	Y			1
France	Y	1	1	
Germany	Y	3		6
Italy	Y	1	2	1
Slovakia	Y		1	
South Africa				
Spain	Y		2	1
Sweden	Y	- vnei		1
Switzerland	Y Q	7 err		1
The Netherlands	Y 🚺			1
Turkey				
UK	Y		1	1
USA (Limited Sponsor)	Y			1
CCREEE (Caribbean)				
EACREEE (East African)	Y		1	
ECREEE (West African)				
EC (MI IC7)				
RCREEE (Arab region)	Y		1	1
SACREEE (Southern African)	Y		2	
Total	17	6	18	23

Other **NPLs are still in progress** or have been requested from SACREEE (Botswana, Lesotho), ECREEE (Nigeria) and South Africa

Collaboration with other SHC Tasks, IEA TCPs, outside organizations/institutions

- Mission Innovation, IC7
- IEA HPT Annex 53 on Advanced Cooling/ Refrigeration Technologies Development
- IEA SHC Task 64 on Solar Process Heat

Issues for the ExCo

Participating ExCo members

- Please sign NPLs and help the experts with funding if possible
- Expert from Canada may join
- Full ExCo
 - None

Task Meetings

Meeting #	Date	Location	Number of participants & countries/sponsors
1	2829.10.2020	Virtual meeting	50 participants 16 countries + 1 Sponsor
2	2425.03.2021	Virtual meeting + Industry Workshop	35-45 participants 19 countries + 1 Sponsor
3	10.11.2021	Virtual meeting	30 participants 10 countries + 1 Sponsor
4	23.03.2022	Virtual meeting	25 participants registered 8 countries + 1 Sponsor
5	29.09.2022	Uni Kassel, Germany	21 participants11 countries + 1 Sponsor
6	2324.03.2023	Uni Innsbruck, Austria + Industry Workshop	
7			
8			

Follow up Task

- 1. **Preparation of task concept paper** until next ExCo meeting (June 2023)
- 2. Potential topics / focus:
 a) Solar Cooling for Africa or
 b) Solar Industrial Cooling or
 c) Solar District Cooling
 d) other

Mentimeter:

https://www.menti.com

Code: 3598 2200

Follow up Task – Mentimeter results

Go to www.menti.com and use the code 3598 2200

Topic for a Task 65 follow up

Mentimeter

12

Other: Latin America

www.iea-shc.org

https://task65.iea-shc.org