SHC Solar Award

The 2012 winner of the SHC SOLAR AWARD is Fred Morse, long time solar advocate in the United States and internationally. Dr. Morse received the award at SHC 2012, the first International Conference on Solar Heating and Cooling for Buildings and Industry in San Francisco, California.

The SHC SOLAR AWARD is given to an individual, company, or private/public institution that has shown outstanding leadership or achievements in the field of solar heating and cooling, and that supports the work of the IEA SHC Programme.

Dr. Morse is the 7th recipient of the SHC SOLAR AWARD. He was selected for his decades of work in solar and his unwavering commitment to this technology long before others saw it as a viable alternative to our fossil and nuclear-based energy supply.

His influence on U.S. policy began in the late 1960s when he served as Executive Director of the White House Assessment of Solar Energy as a National Resource.

IEA Solar Heating and Cooling Roadmap

The International Energy Agency’s (IEA) roadmap identifies how solar thermal can supply almost 1/6th of the world’s total energy use (16.5 EJ) for heating and cooling by 2050. This would save some 800 megatonnes of CO2 emissions per year.

This roadmap is part of a series on the future of key energy technologies produced at the request of the G8. The roadmaps assess the current state-of-the-art of the technology, identify barriers to growth and ways to overcome them, and try to assess the potential up to 2050. The SHC roadmap is a real first because it focuses solely on heating and cooling. It was produced by the IEA with financial support from the IEA SHC Programme as well as the European Solar Thermal Industry Federation (ESTIF), Austria’s Ministry of Transport, Innovation and Technology, Canada’s CanmetENERGY, Germany’s Forschungszentrum Juelich GmbH, Australia’s Clean Energy Council (CEC), the Australian Solar Institute, and the Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO).
SHC 2013 Conference

September 23-25 in Freiburg, Germany

SHC 2013, the first International Conference on Solar Heating and Cooling for Buildings and Industry, took place July 9-11, 2012 in San Francisco, California. A scientific committee, headed by Dr. Jane Davidson and Dr. Steven Harris, selected 200 presentations, which were held in 3 parallel slots. On each of the three conference days, invited “keynote lectures” provided an overview of key areas, with specific sessions then going into much greater depth. This design allowed experts in one field to quickly update themselves on the state-of-the-art in other fields.

The second SHC conference will move to Freiburg, the “solar capital” of Germany. Not only is the city very active in the field of solar energy, it is also home to Europe’s largest solar research institute, the Fraunhofer Institute for Solar Energy Systems. Numerous solar conferences have already been held at the beautiful Konzerthaus, just opposite of Freiburg’s central station (with the high-speed ICE trains, it is only 2 hours away from Germany’s busiest airport, Frankfurt).

SHC 2013, the IEA Solar Heating and Cooling Programme is teaming up with the European Solar Thermal Industry Federation (ESTIF). Their own ESTEC conference is merged with SHC 2013 thus bringing together top international events from solar thermal research and the solar thermal industry.

“This is the one key thing, we want to change”, says Andreas Hübner of the conference organiser PSE. “At SHC 2013 we want to see much more industry involvement. The 2012 edition was a great scientific conference and SHC 2013 will be likewise. For 2013, we want to add the industrial perspective”. Thus the highly acknowledged concept of 3 conference days with keynote lectures, in-depth sessions and poster presentations will be continued and expanded with industry topics. And like in 2012, the conference proceedings will be published by Elsevier, with selected papers appearing in a special edition of the Solar Energy Journal.

For SHC 2013 a mixed conference committee was set-up, led by a scientific chair, Dr. Hans Martin Henning of Fraunhofer ISE and an industrial chair, Xavier Nezoy of ESTIF. The Call for Papers was published in early December and abstracts can be submitted until April 26, 2013.

And for people with a particular interest in solar cooling, it is worth noting that the 5th International Conference Solar Air-Conditioning takes place just after SHC 2013, on September 25 in nearby Bad Krozingen. A reduced entrance fee is offered for those participating in both events.

Conference Dates to Remember
April 26 Abstracts due
June 3 Notification of Acceptance
June 18 Online registration begins
September 23-25 Conference dates

For SHC 2013, the IEA Solar Heating and Cooling Programme is teaming up with the European Solar Thermal Industry Federation (ESTIF). Their own ESTEC conference is merged with SHC 2013 thus bringing together top international events from solar thermal research and the solar thermal industry.

“This is the one key thing, we want to change”, says Andreas Hübner of the conference organiser PSE. “At SHC 2013 we want to see much more industry involvement. The 2012 edition was a great scientific conference and SHC 2013 will be likewise. For 2013, we want to add the industrial perspective”. Thus the highly acknowledged concept of 3 conference days with keynote lectures, in-depth sessions and poster presentations will be continued and expanded with industry topics. And like in 2012, the conference proceedings will be published by Elsevier, with selected papers appearing in a special edition of the Solar Energy Journal.

Conference Topics
We invite all technical experts, marketing specialists, and policy makers to present their work and exchange views and ideas.

• Solar thermal collectors
• Thermal storage
• Other innovative components and systems
• Durability and reliability
• Water heating
• Solar heating and air-conditioning
• District heating
• Solar heat for industrial processes
• Solar refrigeration
• Solar architecture
• Building integration
• Building renovation
• Urban planning
• Solar resource assessment

Market reports and framework conditions
• Market reports (EU)
• Global markets
• Framework conditions and policies
• Innovative business models and marketing
• Standards and certification

SHC Programme & Solar Thermal Trade Associations Meeting
The annual meeting will be held in conjunction with the SHC 2013 conference in Freiburg, Germany on Wednesday, Sept. 25. The meeting will be co-organized with ESTIF and potential topics are global certification, impact of subsidies, and cost of solar domestic water heating systems.

For more information contact the Dutch SHC Executive Committee member, Lex Bossema of Agentschap NL, lex.bossema@agentschap.nl.

SHC Programme Partners with BUILD UP

The SHC Programme joined the BUILD UP initiative as a Partner, following an invitation from the European Commission. www.buildup.eu is an interactive web portal for building professionals, public authorities and building owners who want to share their experience on how best save energy in buildings.

The key aim of this European initiative is to reduce the energy consumption of buildings across Europe by transferring best practices to the market and fostering their uptake.

The interactive BUILD UP web portal catalyses and releases Europe’s collective intelligence for an effective implementation of energy-saving measures in buildings.

In the early 1970s, he designed the U.S.’s first renewable energy program, a strategy that has guided U.S. activities over the decades.

Working in senior level positions at the US Department of Energy in the late 1970s and 1980s, Dr. Morse played a significant role in defining and managing major solar energy research, development, and commercialization programs with annual budgets of up to $250 million. During this time, the IEA SHC Programme was established and Dr. Morse served as the U.S. member of the SHC Executive Committee and as the Programme’s first Chairman.

Once the federal solar budget was dramatically slashed, Dr. Morse decided to move to the private sector and founded Morse Associates, a renewable energy consulting firm that provides critical strategic planning and support services to energy companies, industry groups, government agencies, international organizations and others. In the late 1990s, as co-chair of the Western Governors’ Association Solar Task Force, he helped with solar’s comeback. During this time, he also served as Advisor to the SHC Executive Committee, a position he held until 2007.

Today Dr. Morse serves as the Senior Advisor of U.S. Operations for the Spanish energy company Abengoa.

Dr. Morse joins Helmut Jäger, Manuel Collares Pereira, Volker Wittwer, Jan-Olof Dalenbäck, Willem Beddern, and Torben Eskensen as a recipient of this award. The SHC Programme is recognizing such leaders in the field of solar energy not only for their contributions, but also to promote solar energy as a viable energy source for heating and cooling.

SHC Solar Award from page 1
SHC Solar Roadmap from page 7

Figure 10: Roadmap vision for solar heating and cooling (Epaneurale/yr)

Figure 11: Roadmap vision for solar hot water and space heating in buildings (Epaneurale/yr)

Tackling Solar’s Architectural Barriers

Task 41

Among the solutions to the global energy crisis, the exploitation of solar energy is certainly one of the most promising ecological avenues. Given this, it is surprising to find that solar energy systems are not more widely spread into the general building practice. Traditionally, the economical issue has been dominant in this debate. However, as costs for renewables-based energy systems decline while the price of oil and gas continue to fluctuate, the economical issue is slowly losing its rationale. Some other factors seem to deserve consideration, for instance a general lack of awareness and knowledge of the different technologies among building professionals, a general reluctance to use “new” technologies and finally, last but not least, limitations stemming from architectural and aesthetic considerations in relation to the integration of solar systems.

To address these important issues related to architectural barriers, SHC Task 41: Solar Energy and Architecture was carried out as a three-year project. Task 41 involved professional architects, researchers and educators from 14 countries: Australia, Austria, Belgium, Canada, Denmark, Germany, Italy, Norway, Portugal, South Korea, Singapore, Spain, Sweden and Switzerland.

One of the founding arguments for initiating Task 41 was the consideration that solar technologies for building use have an important impact on the building’s architecture. Due to the large size of solar systems in relation to the scale of the building envelope, the quality of their integration has a major impact on the final architectural quality of the building. Furthermore, experts in this field have observed that a poor architectural quality of the integration into the building envelope may hinder the acceptance and spread of solar technologies.

Participants in Task 41 focused on architectural factors with the main aim to accelerate the development of high quality architecture for building-integrating solar energy systems. A secondary objective was to improve the qualifications of architects regarding solar energy systems and technologies. The scope of the work included residential and non-residential, as well as new and existing buildings.

Criteria for Architectural Integration of Active Solar Products and Systems

To begin, an international survey was carried out to identify barriers that architects are facing when using active solar technologies. The results showed on the one hand, an overwhelming interest in solar technologies and active solar design solutions (80% ranking these issues as important), and on the other hand very low use in actual practice (less than 10% for photovoltaics and less than 20% for solar thermal)!

Passive and daylighting strategies are still more commonly used (69% for solar low-temperature heat) and long-term targets for (nearly) mature solar heating and cooling solutions are categorized by three stakeholder groups: governments, solar heating and cooling industry, and universities/research institutes.

Universities and research institutes are charged with the research and development of the technology to increase the use of solar energy in more applications, to increase the temperature ranges handled by solar systems in relation to the scale of the building envelope, the quality of their integration has a major impact on the final architectural quality of the building.

Further, they should:

- Develop quality assurance methods, certification and standards at system level, to be included in support mechanisms, ensuring an acceptable quality of solar heating and cooling products is achieved.
- Introduce training and education in solar heating and cooling technology for architects, engineers, designers, owners, facility managers, consultants and installers.
- Seek synergies between solar heating and cooling industry and conventional heating, cooling and air conditioning industry.
- Expand international R&D collaboration, making best use of national competencies.

Governments should, amongst others:

- Set medium-term targets for (nearly) mature solar heating and cooling technologies (solar low-temperature heat) and long-term targets for advanced technologies (high-temperature heat and solar cooling).
- Make economic incentive schemes consistent over a period to allow time for industry to plan and develop with certainty. Avoid "stop-and-go" policies by separating funding for support schemes from annual state budgets.
- Consider regulatory approaches such as solar obligations or building regulations.
- Increase R&D funding in the short term and ensure sustained RD&D funding in the long term through private-public partnerships.

End of Task 41

For more information, visit http://www.iea-shc.org/hot/wp.
photovoltaics, followed by a lack of architects’ knowledge and lack of targeted information on solar systems, with similar impact (Fig. 1). Concerning the products, the survey highlighted a difference between solar thermal and photovoltaics: for solar thermal, product availability is one of the main barriers, while only ranking a 9th place for PV. This confirmed the necessity to develop innovative solar thermal products, designed from the start for building integration.

Having no direct ability to impact the economical issues, the Task concentrated on removing the two other major barriers: architects’ knowledge and lack of suitable products. To support architects, comprehensive guidelines were developed, focusing on integration issues brought by solar thermal and PV systems. Solar Energy Systems in Architecture: Integration Criteria and Guidelines summarizes the knowledge needed to integrate active solar technologies into buildings, handling at the same time architectural integration issues and energy production requirements. The report offers technical information about each technology, constructive/functional integration possibilities, system sizing and positioning criteria, and formal flexibility offered by standard products. Good examples of integration are presented, showing ways to make the best use of available products in the architecture. In addition, innovative market products specially adapted to building integration are presented. The guidelines conclude with a short section on the differences and similarities between solar thermal and photovoltaic systems, which should help architects to optimize the energy use and architectural aspects of the solar exposed surfaces of their buildings.

To address the lack of good products for building integration, the Task has developed criteria and guidelines for manufacturers of solar components and systems and they will be available on the Task website in early 2013. Finally, the lack of knowledge on adapted products for building integration has been addressed using a web-site of Innovative Solar Products.

Tools and Methods for Solar Design
A successful integration of passive strategies and active solar technologies can only be achieved if it is considered at the earliest stages of the design process. Do architects have the right tools to perform this integration of solar strategies and systems? The Task participants expressed by architects.

The first step of this process consisted of an inventory of software tools, State-of-the-Art of Digital Tools Used by Architects for Solar Design. In general, the inventory showed that most tools are better suited for the detailed design stage rather than for the early design phase (EDP), and that the majority of tools have limited features suited for the detailed design stage rather than for the early design phase. Tools for the Early Design Phase, when key formal building decisions are taken, are still limited and not integrated in the normal workflow of architects. Such tools are needed to support the architects in their work and also to support their communication with the client, the municipality for building permits, consultants, etc. Tool developments as well as development of CAAD objects for solar components are urgently needed.

Architecturally inspiring solar buildings exist, and this is encouraging since good examples of buildings and architecturally integrated solar systems are important to convince architects and clients and to make buildings welcome in the built environment. However, architecturally inspiring examples of energy-efficient building renovation with solar are few and need to be encouraged further. Our vision – and the opportunity – is to make architectural design a driving force for the use of solar energy! Good examples of urban areas with a conscious planning of solar energy use and energy-efficient buildings were originally planned to be part of Task 41. However, only a few good examples of solar energy in urban planning exist today and vast development of regarding strategies, methods, tools, and case studies on the urban level is needed, which could not be accomplished within scope of Task 41. The good news is that it is the topic for new SHC work, Task 51: Solar Energy in Urban Planning starting in May 2013.

This article was contributed by Maria Wall of Lund University, Sweden and Operating Agent for Task 41 and Task 51, maria.wall@lbdt.lth.se. To learn more and find all the results of Task 41 visit the SHC Task 41 web page.

appealing and energy-efficient architecture can be achieved using solar energy in buildings, see Figure 2. Since one barrier for the architect is to convince the client at an early design stage to use solar energy, a guideline was developed to support architects during this phase. This Communication Guideline is designed to support architects in their communication process with clients, authorities, and contractors. Today, the energy performance of solar solutions is well documented and well known, especially in the “technical environment,” however, this knowledge needs to be communicated in a convincing way to the decision makers if there is to be a broad implementation of sustainable solar solutions in future building design. The Communication Guideline includes convincing arguments and facts supporting the implementation of solar-based design solutions.

Conclusions and Outlook
Good examples of solar components and architecturally appealing solar buildings exist, but further developments of products, tools, and skills are needed. More products are needed with improved flexibility in size, surface texture and color, jointing, etc. as well as dummy elements (with the same appearance as active elements) that can be used on parts of facades and roofs not suitable for active elements. On the other hand, thanks to the growing interest of architects in solar, manufacturers are becoming increasingly aware of the need for new products specially adapted to architectural integration, or at least for increased flexibility in their existing products, leading to novel development activities even in the less developed field of solar thermal integration.

Many digital tools can handle solar energy issues, but are mainly suitable for engineers and for the advanced design phase. Tools for the Early Design Phase, when key formal building decisions are taken, are still limited and not integrated in the normal workflow of architects. Such tools are needed to support the architects in their work and also to support their communication with the client, the municipality for building permits, consultants, etc. Tool developments as well as development of CAAD objects for solar components are urgently needed.

A successful integration of passive strategies and active solar technologies can only be achieved if it is considered at the earliest stages of the design process. Do architects have the right tools to perform this integration of solar strategies and systems? The Task participants expressed by architects.

The first step of this process consisted of an inventory of software tools, State-of-the-Art of Digital Tools Used by Architects for Solar Design. In general, the inventory showed that most tools are better suited for the detailed design stage rather than for the early design phase (EDP), and that the majority of tools have limited features suited for the detailed design stage rather than for the early design phase. Tools for the Early Design Phase, when key formal building decisions are taken, are still limited and not integrated in the normal workflow of architects. Such tools are needed to support the architects in their work and also to support their communication with the client, the municipality for building permits, consultants, etc. Tool developments as well as development of CAAD objects for solar components are urgently needed.

Architecturally inspiring solar buildings exist, and this is encouraging since good examples of buildings and architecturally integrated solar systems are important to convince architects and clients and to make buildings welcome in the built environment. However, architecturally inspiring examples of energy-efficient building renovation with solar are few and need to be encouraged further. Our vision – and the opportunity – is to make architectural design a driving force for the use of solar energy! Good examples of urban areas with a conscious planning of solar energy use and energy-efficient buildings were originally planned to be part of Task 41. However, only a few good examples of solar energy in urban planning exist today and vast development of regarding strategies, methods, tools, and case studies on the urban level is needed, which could not be accomplished within scope of Task 41. The good news is that it is the topic for new SHC work, Task 51: Solar Energy in Urban Planning starting in May 2013.

This article was contributed by Maria Wall of Lund University, Sweden and Operating Agent for Task 41 and Task 51, maria.wall@lbdt.lth.se. To learn more and find all the results of Task 41 visit the SHC Task 41 web page.

appealing and energy-efficient architecture can be achieved using solar energy in buildings, see Figure 2. Since one barrier for the architect is to convince the client at an early design stage to use solar energy, a guideline was developed to support architects during this phase. This Communication Guideline is designed to support architects in their communication process with clients, authorities, and contractors. Today, the energy performance of solar solutions is well documented and well known, especially in the “technical environment,” however, this knowledge needs to be communicated in a convincing way to the decision makers if there is to be a broad implementation of sustainable solar solutions in future building design. The Communication Guideline includes convincing arguments and facts supporting the implementation of solar-based design solutions.

Conclusions and Outlook
Good examples of solar components and architecturally appealing solar buildings exist, but further developments of products, tools, and skills are needed. More products are needed with improved flexibility in size, surface texture and color, jointing, etc. as well as dummy elements (with the same appearance as active elements) that can be used on parts of facades and roofs not suitable for active elements. On the other hand, thanks to the growing interest of architects in solar, manufacturers are becoming increasingly aware of the need for new products specially adapted to architectural integration, or at least for increased flexibility in their existing products, leading to novel development activities even in the less developed field of solar thermal integration.

Many digital tools can handle solar energy issues, but are mainly suitable for engineers and for the advanced design phase. Tools for the Early Design Phase, when key formal building decisions are taken, are still limited and not integrated in the normal workflow of architects. Such tools are needed to support the architects in their work and also to support their communication with the client, the municipality for building permits, consultants, etc. Tool developments as well as development of CAAD objects for solar components are urgently needed.

Architecturally inspiring solar buildings exist, and this is encouraging since good examples of buildings and architecturally integrated solar systems are important to convince architects and clients and to make buildings welcome in the built environment. However, architecturally inspiring examples of energy-efficient building renovation with solar are few and need to be encouraged further. Our vision – and the opportunity – is to make architectural design a driving force for the use of solar energy! Good examples of urban areas with a conscious planning of solar energy use and energy-efficient buildings were originally planned to be part of Task 41. However, only a few good examples of solar energy in urban planning exist today and vast development of regarding strategies, methods, tools, and case studies on the urban level is needed, which could not be accomplished within scope of Task 41. The good news is that it is the topic for new SHC work, Task 51: Solar Energy in Urban Planning starting in May 2013.

This article was contributed by Maria Wall of Lund University, Sweden and Operating Agent for Task 41 and Task 51, maria.wall@lbdt.lth.se. To learn more and find all the results of Task 41 visit the SHC Task 41 web page.
ECREEE Joins the SHC Programme

The Economic Community of West African States (ECOWAS) is a regional group of fifteen West African countries (Benin, Burkina Faso, Cape Verde, Côte d’Ivoire, The Gambia, Ghana, Guinea, Guine-Bissau, Liberia, Mali, Niger, Nigeria, Senegal, Sierra Leone, Togo). Founded on May 28, 1975 with the signing of the Treaty of Lagos, its mission is to promote economic integration across the region and to increase political co-operation.

Considered one of the pillars of the African Economic Community, the organization was founded in order to achieve “collective self-sufficiency” for its member states by creating a single large trading block through an economic and trading union. It also serves as a peacekeeping force in the region. The organization operates in three official languages, English, French, and Portuguese.

The revised treaty of 1993, which was to extend economic and political co-operation among member states, designates the achievement of a common market and a single currency as economic objectives, while in the political sphere it provides for a West African parliament, an economic and social council, and an ECOWAS court of justice to replace the existing Tribunal and enforce Community decisions. The treaty also formally assigned the Community with the responsibility of preventing and settling regional conflicts.

On November 2007 during the ECOWAS Conference on Peace and Security in Ougadougou, Burkina Faso, the Heads of States signed the Ougadougou Declaration, highlighting the need for a regional cooperation in various sectors namely in the energy sector. The declaration articulated the need to establish the ECOWAS Centre for Renewable Energy and Energy Efficiency.

The foundation of the ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE) was laid by the ECOWAS Council of Ministers on November 2008 and on December 2009 the ECOWAS Commission established the Centre, with the support of Austrian Cooperation, UNIDO, and the Government of Cape Verde, and in 2010, Spain became a major partner. The official inauguration took place on July 6, 2010.

ECREEE’s Governance Structure

The ECREEE Secretariat is based in Praia, Cape Verde and operates in all three ECOWAS languages (English, French, Portuguese) And an Executive Director heads the small multinational team of West African and international full-time staff.

ECREEE uses a network of National Focal Institutions (NFIs) to interlink the Secretariat with all the ECOWAS Member States, and Centre activities are executed in cooperation with the NFIs or other entities of the public and private sectors.

The Centre is governed by an Executive Board (EB) and a Technical Committee (TC), which meet usually twice a year. The EB is the highest decision-making body and provides strategic guidance and approves the annual work plans, progress reports, and financial statements of the Centre. The TC continued on page 10
ECREEE from page 9

ECREEE provides technical guidance and is responsible for reviewing major technical documents and reports for submission to the EB. If necessary, the TC reviews projects to be funded by ECREEE and recommends their approval by the EB.

ECREEE Objectives

ECREEE is a specialized agency of Ecowas with a public mandate to promote regional renewable energy (RE) and energy efficiency (EE) markets. It acts as an independent body, but within the legal, administrative, and financial framework of Ecowas.

ECREEE objectives are to:

• promote sustainable development in West Africa by improving access to modern energy services, energy security and climate change mitigation through the use of RE/EE and
• create an enabling environment for regional RE/EE markets by mitigating various barriers for the dissemination of green energy technologies and services.

Through its activities, ECREEE contributes to:

• the improvement of energy security, energy access and mitigation of negative environmental externalities of the energy system in the Ecowas region;
• the UN Goals on Sustainable Energy For All (SEALL), which aims to achieve three interlinked targets by 2030: universal access to modern, affordable and reliable energy services; doubling the rate of improvement in energy efficiency; doubling the share of renewable energy in the global energy mix;
• the WAPP Master Plan Scenario, which aims to double the regional electric generation capacity by 2025, and
• the Ecowas White Paper on energy access, which foresees that at least 20% of new investments in rural electrification should originate from locally available renewable resources.

ECOWAS RE/EE Potentials

West Africa can rely on a wide range of untapped RE&EE potentials in various sectors. So far, West African countries do not take advantage of their RE&EE potentials due to various technical, financial, economic, institutional, legal, and capacity related barriers.

Important renewable energy resources already identified in the Ecowas region include:

• 23,000 MW of hydropower, of which only 16% has been exploited;
• High potential for all forms of bioenergy;
• Considerable wind, tidal, ocean thermal, and wave energy resources available;
• Vast solar energy potential, with a very high radiation average of 5 to 6 KWh/m2 throughout the year.

What ECREEE wants to achieve

The Renewable Energy Policy and the Energy Efficiency Policy of Ecowas approved by the Council of Ministers of Energy at the Accra High Level Forum on 29 of October 2012 defined the following 2020 and 2030 targets for RE & EE:

ECREEE from page 10

<table>
<thead>
<tr>
<th>Grid-Connected Renewable Energy Targets</th>
<th>2020</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE share in total Ecowas generation capacity (incl. large hydro)</td>
<td>35%</td>
<td>48%</td>
</tr>
<tr>
<td>RE share in total Ecowas generation capacity (excl. large hydro)</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>2,425 MW</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>7,606 MW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rural Renewable Energy Targets</th>
<th>2020</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural population supplied by mini-grids and stand-alone systems</td>
<td>22%</td>
<td>25%</td>
</tr>
<tr>
<td>Mini-grids to be installed (includes hybrid systems)</td>
<td>60,000</td>
<td></td>
</tr>
<tr>
<td>1,600 MW</td>
<td>128,000</td>
<td></td>
</tr>
<tr>
<td>7,606 MW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural population served with improved stoves</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Rural population with access to LPG</td>
<td>17%</td>
<td>32%</td>
</tr>
</tbody>
</table>

Other Targets

• Electricity savings through demand side and supply side EE measures: equivalent to 40 power plants with a capacity of 2000 MW
• Doubling of annual improvements in energy efficiency

<table>
<thead>
<tr>
<th>Use of solar thermal hot water systems</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25% of health centers; 10% of hotels; 10% of agro-food industries using hot water;</td>
<td>50% of health centers; 25% of hotels; 25% of agro-food industries using hot water;</td>
<td></td>
</tr>
</tbody>
</table>

| Portion of installed RE/EE equipment locally manufactured | 7% | 20% |

Scope of activities and services of ECREEE

The Centre undertakes activities in four main thematic programs, which aim to mitigate barriers for the deployment and application of RE/EE technologies and services in the region:

• Tailored policy, legal and regulatory framework
• Capacity development and training
• Knowledge management, awareness raising, advocacy and networks
• Business and investment promotion

The activities are implemented in cooperation with the private and public sector, civil society and other national and international institutions, in cooperation with the National Focal Institutions (NFIs).

This article was contributed by ECREEE’s SHC Executive Committee, Jansenio Delgado, JDelgado@ecreee.org. To learn more about ECREEE visit their website at http://www.ecreee.org

As a specialized agency of Ecowas with the mandate to promote renewable energy and energy efficiency in the region, ECREEE is pleased to be a Sponsor of the IEA SHC Programme. We look forward to participating in the R&D activities and offering R&D demonstration projects from West Africa.

JANSENIO DELGADO
ECREEE’S SHC Executive Committee Member

↑ ECREEE Headquarter in Praia, Cape Verde.
IEA SHC Programme’s work on Quality Assurance and Support Measures for Solar Cooling conducted a survey of components and systems related to solar cooling. As part of this work, detailed lists of the solar cooling chillers and DEC systems available on the market have been produced.

Market Available Chillers For Solar Cooling

CEA/INES, the French R&D institute, lead the work on chillers with the strong collaboration from other SHC Task 48: Quality Assurance and Support Measures for Solar Cooling experts. The work had one simple goal: to list with maximum completeness the existing chillers compatible with solar thermal energy as the driver.

Table 1, Market overview of available chillers compatible with solar thermal energy.

In addition to simply listing them, the result include relevant information, such as:
- country and manufacturer
- nominal cooling capacity
- sorption technology (steam and hot water absorption/adsorption)
- working pair (H2O/LiBr, NH3/H2O, etc.)
- sorption technology (single, double, triple effect)

Table 1 gives an overview on the available solar cooling chillers on the market in 2012.

This table shows that a very large range of cooling capacity is possible from 8 kW to more than 10 MW cooling. Asia dominates this market, but Europe is also quite active particularly in the area of small to medium power chillers. It should also be noted that the majority of systems are single effect absorption H2O/LiBr chillers.

When reviewing this table if you notice that a chiller is missing please contact the Task 48: Quality Assurance and Support Measures for Solar Cooling Operating Agent, Daniel Mugnier, daniel.mugnier@tecsol.fr

Solar Desiccant Evaporative Cooling Market

The work of SHC Task 48 primarily addresses quality issues of small and large-scale thermally driven sorption chillers. However, work is also being conducted on open sorption cycle system - namely desiccant evaporative cooling (DEC). The advantage of a solar heat driven DEC system is that it fulfils all the essential requirements of air-conditioning (i.e., control of fresh air temperature, humidity and volume flow). The objective of this Task work is to provide good practice examples of solar DEC system design and installation. This work will also conduct ongoing screening to identify new DEC technology R&D, for example the application of new sorption materials or new system configurations and control strategies.

According to the market survey conducted in SHC Task 38: Solar Air-Conditioning and Refrigeration solar heat driven DEC systems have a low market share of the Solar Air-Conditioning (SAC) market in comparison to absorption and adsorption chillers. Out of 113 SAC systems, only 18 open cycle systems identified were equipped with DEC technology. Solid sorption materials are clearly dominating the applied DEC technology; only two DEC systems have been identified that operate with liquid sorption material.

In the second quarter of 2012, a new successive market screening was carried out by SHC Task 48 experts. Twenty-eight operating solar DEC (SDEC) system were identified. In terms of numbers, Germany, Italy and Austria cover two-thirds of all the identified SDEC installations. Based on the available information, only two SDEC systems operate using liquid sorption material; all the other SDEC systems use solid sorption material coating rotating matrixes or fix beds. As part of the SHC Task 38, experts will continue to collect data to fill the gaps in the technical SDEC system data.

This article was contributed by SHC Task 48 expert Tim Selke of the Austrian Institute of Technology, tim.selke@ait.ac.at; and SHC Task 48 Operating Agent Daniel Mugnier of TECSOL, France, daniel.mugnier@tecsol.fr. For more information go to the SHC Task 48 website: http://task48.iea-shc.org/
Solar + Heat Pump Systems

Task 44

A welcome advancement is the combination of solar thermal technology and heat pumps to heat houses and produce domestic hot water. And, the market for these S+HP systems is booming in countries like Switzerland, Austria and Germany where favorable conditions exist, such as CO2 reduction promotion programs, renewable obligations for domestic hot water production, high electricity peak costs, and incentives. However, to ensure this technology’s long-term commercial success, standards and norms are required.

To support this technology, the IEA Solar Heating and Cooling Programme is collaborating with the IEA Heat Pump Programme to assess the performance and relevance of S+HP systems, to provide a common definition of performances of such systems, and to contribute to the successful market penetration of these new promising combinations of renewable technologies. The main target market is the small system, in the range of 5 to 20 kW, that uses any type of solar collector and any heat source for the heat pump.

Recent Results

2013 marks the conclusion of this work and much has been accomplished.

100 Systems Surveyed

More than 100 systems have been surveyed and classified into four new categories: parallel, serial, regenerative, and complex concept. Task participants developed a special tool called the “square view” to describe the systems in a standard format.

Results from the survey show that 70% of the systems are parallel systems, 7% serial systems, 21% complex systems, and very few are regenerative systems. The number of air and ground heat sources is comparable and only a few systems used just a solar collector as the heat source for the evaporator while the majority of systems used “multi sources”. A report presenting the survey results will be available in early 2013.

In addition, about 20 different systems have been monitored in real conditions and the results will be reported on during later this year 2013. The monitoring of the field tests shows very promising results.

Performance Indicators Defined

Task participants agreed upon a set of performance indicators, which proved to be more difficult than anticipated, to compare systems. The performance indicators include system and component efficiency, primary energy, and CO2 emissions or savings.

One important question when dealing with hybrid systems such as S+HP systems is how to calculate the benefit of the combination “solar and heat pump”. Table 1 is what this Task is working on.

A number of institutes participating in Task 44 are already testing S+HP systems and system components on stands. A common procedure of testing however is still being discussed, as there are no standards at this time.

Simulation Work Continues

To compare systems it is necessary to simulate them with the same “case”. A common framework has been defined based on a reference building with a defined heating and cooling load. To learn more on this work download the report Review of Component Models for the Simulation of Combined Solar and Heat Pump Heating Systems. As part of this work, the Task’s common boundary conditions will be implemented on different simulation platforms, as not all participants want to use TRNSYS.

Simulation models of components are essential for simulating systems and therefore four working groups have surveyed existing models of solar collectors, ground heat exchangers, heat pumps, and heat storage. And, a new Heat Pump Model (Type 877) for TRNSYS has been developed and once it has been validated it can be used for optimisation purposes.

Modelling the frost conditions and water condensation heat exchange on solar absorbers for night operating conditions is well advanced thanks to the prior work of the Task’s Swedish experts. The model was tested on laboratory results in Switzerland and proved to be adequate. Condensation, however, is not very important in the annual balance of heat supplied as solar radiation and air-exchange dominate.

Several systems show good correlations with monitored data for some important S+HP configurations. Comparison of systems (serial, parallel, and others) and optimization will happen during 2013.

Where to Find Results

The Task website is a resource for teaching material on S+HP combinations. Table 1 is what this Task is working on.

Table: Criteria and performance indicators considered in Task 44 to evaluate S+HP combinations.
New PolyTrough 1800 collectors. These collectors are supported by the Swiss Climate Foundation (Klimastiftung Schweiz, www.klimastiftung.ch) and CTI (www.cti.admin.ch).

With this project Emmi and NEP Solar are pioneering the integration of solar thermal technologies to deliver high temperature process heat for industrial applications, an emerging market with huge potential.

For more information contact NEP Solar AG, news@nep-solar.ch or visit the S4C Task 49 webpage.

Solar Community Tops World Record

The Drake Landing Solar Community reached 97 percent of its home heating needs through solar energy. This 52-house subdivision in North America’s first large-scale seasonal storage solar heating system. It provides space heating by collecting solar thermal energy throughout the summer and storing it underground in a borehole thermal energy system (BTES) to use to heat the homes during the winter.

“...to achieve and do better than what we originally designed here in this technology being promoted not only within Canada, but around the world...” says Dhu, Canadian Solar Inc.

With this project Emmi and NEP Solar are pioneering the integration of solar thermal technologies to deliver high temperature process heat for industrial applications, an emerging market with huge potential.

The project is a milestone for NEP Solar in that it is the first commercial project utilizing the new PolyTrough 1800 collector. These collectors were developed in conjunction with the Institute for Solar Technology SPF in Rapperswil, Switzerland, and the development and industrialization of NEP Solar’s new PolyTrough 1800 collector is supported by the Swiss Climate Foundation (Klimastiftung Schweiz, www.klimastiftung.ch) and CTI (www.cti.admin.ch).

With this project Emmi and NEP Solar are pioneering the integration of solar thermal technologies to deliver high temperature process heat for industrial applications, an emerging market with huge potential.

The project is also a milestone for NEP Solar in that it is the first commercial project utilizing the new PolyTrough 1800 collector. These collectors were developed in conjunction with the Institute for Solar Technology SPF in Rapperswil, Switzerland, and the development and industrialization of NEP Solar’s new PolyTrough 1800 collector is supported by the Swiss Climate Foundation (Klimastiftung Schweiz, www.klimastiftung.ch) and CTI (www.cti.admin.ch).

With this project Emmi and NEP Solar are pioneering the integration of solar thermal technologies to deliver high temperature process heat for industrial applications, an emerging market with huge potential.

The project is also a milestone for NEP Solar in that it is the first commercial project utilizing the new PolyTrough 1800 collector. These collectors were developed in conjunction with the Institute for Solar Technology SPF in Rapperswil, Switzerland, and the development and industrialization of NEP Solar’s new PolyTrough 1800 collector is supported by the Swiss Climate Foundation (Klimastiftung Schweiz, www.klimastiftung.ch) and CTI (www.cti.admin.ch).

With this project Emmi and NEP Solar are pioneering the integration of solar thermal technologies to deliver high temperature process heat for industrial applications, an emerging market with huge potential.

The project is also a milestone for NEP Solar in that it is the first commercial project utilizing the new PolyTrough 1800 collector. These collectors were developed in conjunction with the Institute for Solar Technology SPF in Rapperswil, Switzerland, and the development and industrialization of NEP Solar’s new PolyTrough 1800 collector is supported by the Swiss Climate Foundation (Klimastiftung Schweiz, www.klimastiftung.ch) and CTI (www.cti.admin.ch).

With this project Emmi and NEP Solar are pioneering the integration of solar thermal technologies to deliver high temperature process heat for industrial applications, an emerging market with huge potential.
The International Energy Agency was formed in 1974 within the framework of the Organization for Economic Cooperation and Development (OECD) to implement a program of international energy cooperation among its member countries, including collaborative research, development and demonstration projects in new energy technologies. The members of the IEA Solar Heating and Cooling Agreement have initiated a total of 49 R&D projects (known as Tasks) to advance solar energy technologies for buildings. The overall Programme is managed by an Executive Committee while the individual Tasks are led by Operating Agents.

Current Tasks and Operating Agents

Polymeric Materials for Solar Thermal Applications
Dr. Michael Köhl
Fraunhofer Institute for Solar Energy Systems
Heidenhofstr. 2
D-79 110 Freiburg
GERMANY
michael.koeHL@ise.fraunhofer.de

Toward Net Zero Energy Solar Buildings
Mr. Josef Ayoub
CameleNERGY
Natural Resources Canada
1615, boul. Lionel-Boulet
Varennes, Quebec J3X 1S6
CANADA
josef.ayoub@nrcan-rcan.gc.ca
jayoub@encs.concordia.ca

Solar Energy and Architecture
Ms. Maria Wall
Lund University
P.O. Box 188
SE-221 00 Lund
SWEDEN
maria.wall@ebd.lth.se
wm@wmvanhelden.com

Compact Thermal Energy Storage
Mr. Wim van Helden
 Renewable Heat B.V.
Oosterstraat 15
1741 GH Schagen
NETHERLANDS
wim@wimvanhelden.com

Solar Rating and Certification Procedures
Mr. Les Nelson
IAPMO Solar Heating & Cooling Programs
5001 E. Philadelphia Street
Ontario, CA 91761
les.nelson@iapmo.org

Solar and Heat Pump Systems
Mr. Jan Erik Nielsen
PlanEnergi
Aggerupvej 1
DK-4330 Hvalsø
DENMARK
jen@solarkey.dk

Large Systems: Large Solar Heating/Cooling Systems, Seasonal Storage, Heat Pumps
Mr. Jan Erik Nielsen
PlanEnergi
Aggerupvej 1
DK-4330 Hvalsø
DENMARK
jen@solarkey.dk

Solar Resource Assessment and Forecasting
Dr. David Renné
2385 Panorama Ave.
Boulder, CO 80304
UNITED STATES
drenne@mac.com

Member Countries and Executive Committee Members

AUSTRIA
Mr. K. Guthie
Mr. W. Weiss
BELGIUM
Prof. A. De Herde
CANADA
Mr. D. McClennen
CHINA
Prof. H. Tao
DENMARK
Mr. J. Windeleff
ECREEE
Mr. J. Delgado
EUROPEAN COMMISSION
Mr. J. Riego
FINLAND
Mr. M. Korkiakoski
FRANCE
Ms. C. Coulaud
GERMANY
Dr. R. Drese
ITALY
Mr. M. Zinzi
MEXICO
Dr. W. Rivera
NETHERLANDS
Mr. L. Bosselaar
NORWAY
Dr. T. Wigenstad
PORTUGAL
Mr. J. F. Mendes
SPAIN
Dr. M. Jiménez
SOUTH AFRICA
Mr. K. S. Ang
SWEDEN
Dr. T. Mali
SWITZERLAND
Dr. J. Sjödin
UNITED STATES
Mr. A. Eckmanns
Mr. B. Habibzadeh

CHAIRMAN
Mr. Werner Weiss
AEE – Institute for Sustainable Technologies
Feldgasse 19
A-8200 Gleisdorf
AUSTRIA
Tel: +43/3112 5886 17
e-mail: w.weiss@aee.at

SHC SECRETARIAT
Ms. Pamela Murphy
KMGroup
9131 S. Lake Shore Dr.
Cedar, MI 49621
USA
Tel: +1/231/620-0634
e-mail: secretariat@iea-shc.org

SOLAR UPDATE
The Newsletter of the IEA Solar Heating and Cooling Programme

Vol.57, January 2013
Prepared for the IEA Solar Heating and Cooling Executive Committee
by
KMGroup, USA

Editor:
Pamela Murphy

This newsletter is intended to provide information to its readers on the activities of the IEA Solar Heating and Cooling Programme. Its contents do not necessarily reflect the viewpoints or policies of the International Energy Agency or its member countries, the IEA Solar Heating and Cooling Programme member countries or the participating researchers.

www.iea-shc.org

18 january 2013 shc solar update