METHODS FOR ASSESSING HERITAGE VALUES IN HISTORIC BUILDINGS

This is part of a series of fact sheets meant to facilitate and enhance the use of the European standard EN 16883:2017 Conservation of cultural heritage – Guidelines for improving the energy performance of historic buildings.

This particular fact sheet provides information about methods for assessing heritage values in historic buildings: Methods, approaches and practices for heritage value assessment and applied conservation principles.

It is important to stress there is no universal standard for how heritage values should be identified and assessed. In most cases, the assessment of heritage values must be carried out by skilled professionals.
Multidisciplinary planning process

<table>
<thead>
<tr>
<th>Method/approach/practice</th>
<th>Description</th>
<th>Comments</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Burra charter process</td>
<td>The Burra charter process gives the sequence of investigations, decisions and actions needed in order to manage heritage assets. Assessment of heritage values is part of the first step of the process. The second step of the process is about developing a maintenance policy for the heritage asset and finally acting according to policy is ending this process.</td>
<td>The Burra charter is an adaption of the Venice charter aiming at introducing a more systematic approach in the heritage sector.</td>
<td>[1]</td>
</tr>
<tr>
<td>Conservation principles, policies and guidance – for the sustainable management of the historic environment</td>
<td>Historic England has developed a guide on national conservation principles and policies. A typology consisting of four main values is proposed; evidential values, historical values, aesthetic values and communal values. These values and the significance of the place need to be assessed through understanding, identifying and finally articulating the significance.</td>
<td>The guidance developed for the specific English context. However, it contains general features that allows the process to be applied in other countries.</td>
<td>[2]</td>
</tr>
<tr>
<td>DIVE – Urban heritage analysis</td>
<td>The heritage assessment is incorporated in a broader process as a component in spatial planning and development. The assessment process comprises four steps; Describe (origin, development and character), Interpret (elements of importance), Value (tolerance of change to elements of importance) and finally Enable (manage and develop).</td>
<td>This procedural method is developed for planning at a district level. However, parts of the process can be scaled down to the building level</td>
<td>[3]</td>
</tr>
<tr>
<td>SAVE - Survey of Architectural Values in the Environment</td>
<td>SAVE is a Danish method developed as planning tool. Heritage values are assessed on a scale from 1-9 using five parameters: architectural value, cultural-historic value, environmental value, originality, and technical value. The five parameters are summed up into one overall preservation value divided into three groups: high preservation value (1-3), Medium preservation value (4-6) and Low preservation value (7-9).</td>
<td>The method is based on assessing an overall heritage value for buildings rather than pointing at details or elements in the building.</td>
<td>[4]</td>
</tr>
<tr>
<td>Character defining elements/features</td>
<td>The US Department of National Park Service provides a guide to identify visual aspects of historic buildings as an aid to preserving their character. The guide recommends that the identification of character defining elements should be done in three steps. The first step is to identify the overall visual aspects of the building, the second step is to identify visual character at close range and the third step is to identify interior visual character.</td>
<td>This is a guideline with a purpose to help owners and architects to identify those features or elements that give the building its visual character and that should be taken into account in order to preserve them.</td>
<td>[5]</td>
</tr>
<tr>
<td>The P-Renewal project methodology</td>
<td>The P-Renewal project methodology is a Belgian process based tool for retrofitting historic buildings built before 1914. The method is a five step bottom-up approach were heritage values are identified using the indicators from the Wallon Heritage Administration. This approach uses a cross evaluation matrix with 11 “interest” criteria (archaeological, architectural, artistic, aesthetic, historic, memory, landscape, scientific, social, technical and urban) and four quality indicators (authenticity, wholeness/integrity, scarcity and representativity) .</td>
<td>This is primarily a method that catgorises the assessment of cultural values from a typological point of view. The methodological approach can be transferred to other national or typological contexts.</td>
<td>[6]</td>
</tr>
</tbody>
</table>
Multidisciplinary planning process

EFFESUS project methodology	The EFFESUS heritage value assessment method is a stepwise process where heritage values are balanced against an impact assessment. Heritage significance of a building or a building component is graded from outstanding significance (4) to no identified significance (0). Impact grading of each energy efficiency measure is set from no impact (0) to severe impact (4). Balancing of results is done using a scale from not acceptable to acceptable.	The method is vague in describing how statements on heritage significance grading are to be made.
Attribute Significance assessment	This method is using a three layered analysis approach in assessing important attributes in buildings that are about to be renovated. The analysis contains of a quantitative, a visual and a qualitative step. The assessment method is structured around four key elements: scale levels (area, ensemble, building, building elements), attributes, heritage significance and aspects.	This method requires that the assessment of valuable attributes in the buildings is carried out by a group of experts.
Framework for a holistic value-based approach	This approach is based on a study of existing heritage value typologies. The approach consists of three stages of heritage value assessment. The first stage is to identify the features of significance of a place, the second step asks why something is of value and could be worthy of conservation. The third and last step is a qualifier of value in order to prioritise conservation activities.	This approach is presented in a scientific paper with the ambition to bridge theory and practice.
The toolbox approach and triangulation method	The complexity of value assessment is the core of the toolbox approach. Every situation requires a well-adapted approach to how heritage values could be assessed. Some situations has a need for stakeholder participation, others for expert analysis. The triangulation method means that assessment of heritage values is carried out systematically and with different perspectives a value statement is made.	This is more an approach than a method. The approach assumes that you have a good knowledge of the tools that are relevant to the specific case.
Multidisciplinary planning process

REFERENCES

Project structure

The project consists of four work packages called “Subtasks”

Subtask B > Multidisciplinary planning process

led by Uppsala University, Sweden

Investigate how existing guidelines for improving the energy performance of historic buildings can be enhanced and complemented in order to better meet the needs of the end user by providing an integrated design platform.

Organizational details

Full project title
Deep Renovation of Historic Buildings Towards Lowest Possible Energy Demand and CO₂ Emission (NZEB)

Project sponsor
International Energy Agency’s
> Solar Heating & Cooling Programme (SHC) Task 59
> Energy in Buildings and Communities (ECB) Annex 76

Duration
September 2017 – February 2021

Operating Agent
Alexandra Troi
Institute for Renewable Energy
EURAC Research
Via Volta 13/A
I-39100 Bolzano / Bozen
Italy

Connect with us

http://task59.iea-shc.org
http://annex76.iea-ebc.org
task59@eurac.edu
www.facebook.com/HistoricNZEB
www.twitter.com/HistoricNZEB