NAVITAS – A Testbed for Integrated Daylighting and Electric Lighting Aspects

Largest low-energy building in Denmark provides good daylighting and allows for a detailed study of integrated electric lighting and solar shading

A study of integrated lighting at a research and education centre reveals that a highly energy-efficient building could be further improved through relatively simple measures. Such measures include shades that automatically return to a fully open state at the end of a day, a manual on-switch for electric lighting and better light sensor positions.

The project

Navitas (Fig. 1) is a centre for education, research and innovation addressing climate, environment and energy at the harbour front of the City of Aarhus housing up to 3,000 students, educators, researchers and innovators on a floor area of 38,000 m². Navitas was built between 2011 and 2014 as a joint venture between Aarhus University, INCUBA Science Park, and Aarhus School of Marine and Technical Engineering at a cost of ca. € 95 Million. The final design was chosen through a competition requiring a turnkey contract with integrated designer and contractor teams. The chosen design also had the most appealing daylighting. All spaces used for extended periods have daylight access through the façade or interior courtyards/atria (see also Fig. 4). The building is Denmark’s largest low-energy commercial building and meets the stringent “Energy Class 1” requirements of the 2015 Building Regulations. Simulations could demonstrate that the building’s energy use would be less than 50% of that needed by a standard commercial building. This was achieved through integrated energy design during the planning phase, a highly insulated building façade with triple-pane windows (\(t_{vis} = 53\% \)), daylight-responsive electric lighting control with occupancy detection, 5,500 m² of photovoltaic panels on its roof, and cooling of ventilation air with water from the harbour. An intelligent building management system (BMS) permanently monitors indoor climate and lighting and adjusts values as needed. The lighting system (Figs. 2 and 3) uses T5 fluorescent luminaires (4,000 K) aimed at an illuminance of 300 lux on the work plane in offices, meeting rooms and classrooms and additional manually-operated desk luminaires to

Figure 1. Navitas Building at Aarhus harbour front viewed from South.
reach 500 lux where required. Two luminaire circuits parallel to the window façade dim automatically according to available daylight levels via ceiling-mounted illuminance sensors and turn off completely when occupancy sensors no longer detect activity. Users can manually adjust the light output between 0% and 100% via a control panel at the entrance of each room. Shading consists of black, manually-operated, perforated interior roller blinds with 50% openings. These also serve for reducing light levels for media presentations during teaching.

Monitoring

Researchers from Aarhus University’s Lighting Design Research Group established Navitas as a testbed for trialing established and novel ways of assessing integrated daylighting and electric lighting in the fall of 2019. A typical office space for academic staff (04.103) was fitted with various illuminance sensors, as well as two Raspberry-Pi computers with fisheye-lens cameras, whereas eight other offices and classroom spaces (fig. 4) were each fitted with a Raspberry-Pi at the ceiling centre looking at the floor. Long-term illuminance measurements every 15 minutes over a period of nearly 2.5 years until June 2021 were made in 04.103 (fig. 5). The Raspberry-Pi computers recorded luminance maps of the room surfaces in all rooms every 15 minutes (fig. 6). Luminance maps were used to assess illuminance levels (via surface reflectance values) and positions of manually operated window blinds. Measured readings were compared to data from the BMS gathered by in-ceiling light and occupancy sensors installed in the respective rooms and resulting light output values (0% = lights off; 100% = lights fully on). Supplementary spot luminance, vertical illuminance and spectral values were recorded at selected times at the workstations from the perspective of the user. The COVID-19 situation severely restricted which data could be used for analysis, as the lock-down limited access to the building and lighting systems were off for most of the time. The case study thus focussed on exploring connections between various lighting, energy and user aspects.

Energy

As part of the energy assessment for the offices and classrooms, data from the BMS for the nine spaces were...
reviewed. However, the long lockdown periods and only periodic use of Navitas for essential project work do not reflect normal use and energy consumption patterns. Emphasis was thus placed on assessing those aspects likely to affect energy use negatively. At present, the electric lighting turns on automatically when the detected illumination levels are below the set-point when a person enters a room and stays on for a minimum of 30 minutes, even when users only briefly enter a room and leave again. A manual on-switch at the door would enforce deliberate action by an occupant, who may decide not to turn on the light in such a case. In September 2020, an unexplained error in the BMS raised the desired illuminance setting from 300 to 900 lux. Electric lighting would have failed to dim as the daylight levels alone never reached 900 lux below the in-ceiling sensors. Had it not been for this project, the error might not have been detected. User behaviour with respect to operating the manual roller blinds in offices and classrooms (see also under Photometry) was found to be a major factor in energy use. Active users frequently change the blind settings in response to daylighting conditions and direct sunlight penetration. Passive users often leave the blinds in a specific “workable” position for longer periods of time. Motorised blinds that move up at the end of each day and require new action by the user(s) the next day could increase daylight availability in and reduce energy for electric lighting.

Photometry

Measurements in 04.103 indicate that a daylight factor of at least 2.1% or 300 lux for half of the daylight hours across the year (EN 17037) can be reached 2.5m into the room from the façade. Most of the workstations at Navitas are located along the building’s exterior façade. The desk in the north-west corner of 04.103 does not receive sufficient daylight. In classrooms with a depth of 8 to 10m from the façade, however, two thirds of the area fall below the 300 lux threshold from daylight alone, requiring electric lighting for most of the occupied hours. Electric lighting reaches on average 250 lux on the working plane. Below the luminaires, levels reach between 300 and 350 lux, but the workstation in the north-west corner of the room only receives 50 to 100 lux. Figure 6 shows an example of electric lighting performance based on data from the BMS for the nearly identical rooms 04.103 and 04.106 for a day with similar occupancy schedules. After the cleaning staff activities (two short peaks), academic staff arrive around 08:30 in 04.103 (left) and around 09:30 in 04.106 (right). Electric lights turn off 30 minutes after the last detected occupant movement. During midday, electric lighting turn off in 04.103 due to sufficient available daylight detected by the in-ceiling light sensor and occupants leaving. The lights in 04.106 stay on due to continuing occupancy, but are slightly dimmed as the lux level moves above 300 lux. The detected light levels are lower for 04.106 throughout the day, resulting in higher energy use. Daylight alone covers 13.2% of the occupied time in 04.103, but only 1.6% in 04.106. Luminance map images clearly show that blinds in 04.106 were pulled down about half-way, while blinds in 04.103 were fully open. Users had not moved the blinds in 04.106 between 22 October and 4 November 2019, whereas users in 04.103 actively adjusted blinds based on conditions in the room.

Circadian potential

Spectral information, appropriately weighted, allows for assessment of the circadian potential of different...
Acknowledgements

Financial support: The Danish Energy Agency - and the Danish Electricity Research Agency